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Abstract 

 
The structural transitions of nuclei under extreme conditions of high spin 

and temperature is examined.  The giant dipole resonance (GDR) built on 

excited states is studied in Samarium nuclei. The static collective model for 
GDR is used in this work to obtain the resonant energies and the 

corresponding peak cross sections for 
152

Sm nuclei. Equilibrium shapes are 

obtained by finite temperature version of the cranked Nilsson - Strutinsky 
shell correction method. The shape correlation between the GDR cross 

section and the predictions by CNS method is made. Results show that the 

GDR cross section reflects the shapes obtained by CNS method and the 
theoretical GDR cross sections are in agreement with the experimental 

data. 

 
 
 
 
 
 
 
 
 
 
 
 
 

This peak with such large width is known as the giant 
dipole resonance. The absorption or emission of 

photons by a nucleus causes displacement of the 

protons due to the electromagnetic field of the 
photons.To keep the centre of mass at rest, the neutrons 

move in the opposite direction. Due to the strong 

attraction between protons and neutrons, separating 
them in this way requires a substantial amount of 

energy, which is the origin of a restoring force. This 

restoring force induces an out-of-phase oscillatory 

displacement of the protons and neutrons. The 
displacement of charge in a fixed direction produces a 

dipole moment in the system which couples strongly to 

electromagnetic fields. The displacement vector can be 
very simple making dipole modes collective. This 

collectivity or concentration of a large fraction of the 

oscillator strength in a small frequency interval, gave 

this mode the name “Giant Dipole Resonance” (GDR).  
Giant resonances in general are small amplitude, high 

frequency, simple, collective modes of excitations of 

nuclei.  The study of giant resonances has been and 

still is a major topic of research in nuclear physics. 

Introduction 

 

The giant dipole resonance (GDR) has been of central 
interest in the study of photonuclear reactions. Attempts 

have been made to delineate the systematics of photon 

absorption by nuclei in general and of the giant electric 
dipole resonance in particular, which dominates the 

absorption process at energies between 10 and 30 MeV. 

This corresponds to the fundamental frequency for 

absorption of electric dipole radiation by the nucleus. 
The semiclassical hydrodynamic model of Goldhaber 

and Teller [1], Steinwedel and Jenson [2] considers this 

as the oscillations of the neutrons against the protons. 
The photoabsorption cross section has a peak at energy 

between 10 and 30 MeV with a width of about   5 MeV.  
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A „high spin state‟ is a state of the nucleus possessing 

very large value of angular momentum. In heavy ion 

collisions compound nuclei can be formed at high 

excitation energies and at very high angular 

momentum states. At high spin the nuclei is expected 

to undergo a variety of shape transitions. The two 

fluid hydrodynamical model of the nucleus explains 

the giant dipole resonance for spherical as well as for 

deformed nuclei. The giant dipole resonance for 

spherical nuclei consists of a single line known as the 

Lorentz line and for prolate andoblate nuclei it 

consists of two Lorentzian lines with two peaks 

having a separation between them which is of the 

order of the nuclear deformation β.  In the case of 

triaxial nuclei, the giant dipole resonance consists of 

three Lorentzian lines with three peaks. When the 

nucleus rotates with high spins, shape changes have 

been found to occur and it would be of interest to 

investigate how these shape changes affect their 

GDR spectra. With this aim, the static collective 

model [3,4] for GDR is used in this work to obtain 

the resonant energies and the corresponding peak 

cross sections for 
152

Sm, nuclei. Equilibrium shapes 

are obtained by finite temperature version of the 

cranked Nilsson - Strutinsky shell correction method.   

Absorption Cross Section using Static  

Collective Model  

 

The hydrodynamic static collective model [5] 

assumes the nucleus to consist of two fluids, the 

proton fluid with the density ),( trp and the 

neutron fluid with the density ),( trn . The total 

density of the nucleus, )(0 r  is assumed to be time 

– independent  

)(0 r  = ),( trp  + ),( trn   (1) 

This assumption comprises nuclear 

incompressibility, or to be more precise, the neglect 

of a coupling of giant resonance modes to nuclear 

compression modes.   
 

The photo – absorption cross section of nuclei plays 

an important part in understanding the giant 
resonances. The absorption cross section is defined 

as the average energy absorbed per unit time per 

incoming energy flux. The average incident flux of 
the electromagnetic wave is 

Save  =  
8

C
E

2
    (2) 

 

 

where E is the electric field. Therefore the absorption 

cross section   is given by 

  =
ave

ave

S

DE ).(
   (3) 

where D is the dipole moment. We know that the 

rotating nuclei are statically deformed. It was Danos 
[3] and Okamato [4] who have applied the static 

collective model for an axially symmetric ellipsoid. 

Three degenerate giant dipole modes exist in the case 

of spherical nuclei.  In the case of an ellipsoid, these 
three degenerate modes split into two, in such a way 

that one mode oscillates along the long axis of the 

ellipsoid and two degenerate modes oscillating in the 
plane perpendicular to the long axis. As giant 

resonances are standing sound waves in the nucleus, 

we can expect normal modes of wavelengths i  Ri 

where Ri are the radii in the three ellipsoidal axes.  

Therefore for the frequencies 
1Rii  and hence the 

energies are proportional to the reciprocal radii. It was 

Danos who calculated the ratio of energies along the 
axes a and b 

911.0
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 + 0.089or 

911.0
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E

EE
(
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ba 
)   (4) 

Therefore, in the case of axially deformed nuclei, the 

absorption cross section exhibits two peaks in the giant 
resonance region. The separation between the peaks is 

proportional to the deformation β.For a prolate 

nucleus, the upper component of the giant resonance 

contains twice as much integrated cross section as the 
lower one (i.e β> 0  or  a > b) and vice versa for oblate 

nuclei. Thus the form of the giant resonance absorption 

cross section gives direct information not only on the 
magnitude but also on the sign of the nuclear 

deformation. The GDR cross section takes the form [4] 

 = 22222

2

2

2

)(2

24


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nnn zA

NZ

CM

e
 (5) 

The above eqn. (2.5) exhibits a typical resonance 

structure where the individual resonances have a 

Lorentzian shape. By using the semi classical theory of 
the interaction of photons with nuclei, the shape of a 

fundamental resonance in the absorption cross section 

is that of the Lorentz curve. 

  22222 /1
)(




EEE
E

m

m
   (6) 

where the Lorentz parameters Em,  m and    are the 

resonance energy, peak cross section and full width at 
half maximum respectively. 
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can be obtained from the Lorentz parameters. It was 

found that the area ratio RA leads to some uncertainty 
in its value for prolate and oblate nuclei [7]. 

 

There are more theories other than the elementary 

hydrodynamic theory of the giant resonance that 
include the coupling of quadrupole (surface) 

oscillations to the main dipole (volume) vibrations of 

the nucleus. Even though these do not affect the peak 
photo absorption cross section, they affect the 

smoothness of the giant resonance curves. Since the 

present work aims at studying in general, the shape 
changes of heavy nuclei at high spins, these couplings 

are not considered.   

 

Shapes of Excited Nuclei by Cranked  

Nilsson Strutinsky Method 

The Nilsson-Strutinsky method is one among the most 

feasible way to do systematic calculations of the 

nuclear energy as a function of deformation and/or 

excitation.The Strutinsky‟s method of shell corrections 

[8-10] has been successfully used in calculations of the 

nuclear deformation energy, with the concept dividing 

the total nuclear binding energy in to a smooth liquid-

drop energy ELDM and an oscillating shell correction 

energy E.The shell energy calculations for non-

rotating case (I=0) assumes a single particle field in tri-

axial Nilsson model in the rotating frame [11] 

 0 0H h    (11) 

where 0h  is the triaxial Nilsson Hamiltonian given by  

2 3

2 2 2 2

0

1

1
. ( 2 )

2 2
i i

i

p
h m Cl s D l l

m
 



     (12) 

The three oscillator frequencies i  are given by the 

Hill Wheeler parameterization as  

0

5 2
exp cos

4 3
x    



  
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  (13) 
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  (14) 

   

 

In the case of spherical nuclei, the giant dipole 

resonance consists of one Lorentz line. The peak cross 

section 
m for spherical nuclei is given by [6] 

  


 


 186.0
12

60
m

m
A

NZ
 (7) 

where m  is the width at half maximum and α is an 

adjustable parameters. 

 

For statically deformed nuclei, the giant resonance 

consists of two such Lorentz lines corresponding to the 
absorption of photons which induce oscillations of the 

neutron and proton fluids in the nucleus against each 

other. In such cases, 

  22222

2

1 /1
)(

imi

mi

i EEE
E


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


  (8) 

where i = 1, 2 correspond to the lower  and higher 

energy lines. The lower energy line corresponds to 
oscillations along the longer axis and the higher energy 

line corresponds to oscillations along the shorter axis. In 

the case of triaxial nuclei, the giant dipole resonance 
consists of three such Lorentz lines corresponding to the 

oscillations along each of the non – degenerate axes. 

 

For deformed spheroidal nuclei, the peak cross sections 

1m  and 2m  are determined using 

)]1(86.0[
2

602211 


 
A

NZ
mmmm  (9) 

When the areas under the Lorentz curves are considered, 

for spherical nuclei, the area under the Lorentz curve is 

given by 

   mdEE 





2
0

  (10) 

For deformed nuclei, the assumed area under the two – 

line Lorentz curve is given by 

   2211

0
2

 mmdEE 





 

Also, it was predicted that the ratio of the area under the 

lower – energy component of the giant resonance to that 

under the higher energy component to be 
2

1 for prolate 

and 2 for oblate nuclei. The values for the area ratio 

2211 /  mmAR   
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With the constraint of constant volume for equipotentials 

 

03

0x y z       constant,  (16) 

where the oscillator frequency is chosen as 

0

0
1/3

45.3

( 0.77)
h MeV

A
 


   (17) 

In the expression for h0(in eqn. 12), the term 
2l  has 

been doubled to obtain better agreement between the 

Strutinsky-smoothed moment of inertia and the rigid rotor 

value. Accordingly, the parameter D corresponding to a 
mass region has to be predetermined with the help of 

single-particle levels in the given mass region. The 

Hamiltonian (12) is diagonalized in cylindrical 

representation up to N=11 shells. Here Nosc is the 
harmonic oscillator principal quantum number.For the 

rotating case ( 0)I  , the Hamiltonian becomes 

 0 zH H J h    ,  (18) 

where 

 0 zH h J   ,   (19) 

if it is assumed that the rotation takes place around the z-

axis. The single particle energy ie and the wave function 

i

 are given by i i ih e  

    

 (20) 

The spin projections are obtained as 

 i i z im j     (21) 

The total shell energy is given by 

 
0sp i i iE h e       (22) 

where i i ie e m      (23) 

Thus sp iE e I       (24) 

The total spin I from the shell model is given by 

 iI m     (25) 

The sums should be carried out over the occupied states 

where the occupation is determined from the order of the 

quantities ie . 

 

The total energy in cranked Nilsson Strutinsky 

prescription is thus given by 

( , ; , ) ( , ; , ) ( , ; , )T RLDME T I E T I TS E T I E        


(26) 

Where ERLDM is the rotating liquid drop energy 

 

Results and Discussion 
 
The investigation of structural changes of nuclei at 

high excitation energy is a topic of current interest 

in nuclear structure studies [12]. For studying the 

shapes of hot rotating nuclei, the main experimental 
technique used is to measure the GDR built on their 

ground or excited states. Isovector giant dipole 

resonance is one of the most important collective 
modes of nuclei. There has recently been a great 

deal of speculation concerning how the strength 

might evolve in medium mass and heavy nuclei. 
Theoretical studies are beginning to appear, but 

there is as yet very little experimental data. The 

GDR cross sections in excited nuclei show a very 

interesting evolution as signature for shape 
transitions.  We have made an attempt to study such 

shape transitions and to see how the GDR cross 

section reflects these shapes. 
 

To detect the shape transitions theoretically we have 

obtained the GDR cross sections in 
152

Sm as a 
function of spin. In the calculations performed in 

this work, the cranked Nilsson -Strutinskymethod is 

first used to obtain the shape and deformation of the 

considered nuclei as a function of spin [12].  The 
Nilsson Hamiltonian is diagonalized in cylindrical 

representation up to N = 11 shells using the 

appropriate constants which are applicable for the 
nuclear region considered. The energy eigen values 

are generated for γ ranging from -180
o
 to -120

o
 in 

steps of -10
o
 and β ranging from 0.0 to 1.2 in steps 

of 0.1. The cranking frequency ωc is varied from 0.0 
to 0.3 in steps of 0.03.  The single particle routhians 

are generated with spin values I = 0  to 60  for 
152

Sm nuclei.The Hill – Wheeler expressions for 
frequencies have been used in the cranked Nilsson 

model in order to take care of large deformations 

involved in the calculations.  

 
In the second phase of this work, the equilibrium 

deformations β and γ obtained by the Strutinsky 

method is used to calculate the semi axes of the 
nuclei considered and the results are presented in   

table 1.  The peak energies are evaluated using these 

values and the peak cross sections corresponding to  
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these peak energies are then obtained. The 

calculated values of resonant energies and peak 

cross sections for the considered nuclei are 

presented in table 2. The sample result of GDR 
Lorentzian curve for 

152
Smis presented in figure 1. 

One can see from this figure that the two peaks 

obtained at spin 60 ħ represents the oblate 
spheroidal shape of the nucleus. It is to be noted  
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Fig 1 GDR Lorentzian curve for 
152

Sm 

 

 

 

from the results presented in the tables 1and 2 that the 

GDR cross sections beautifully reflect the nuclear 
shape changes that take place at higher spins. Our 

results show that the theoretical GDR cross sections are 

in agreement with the experimental data. The 

experimental data in the higher energy region is quite 
scattered and as a result of this the experimental GDR 

width is quite larger.  

 

Table 1   Shape transitions in 
152

Sm with spin 

 

I (h)  (deg)  E (MeV) Shape 

 0.00 

10.00 

19.99 

29.98 

39.99 

49.97 

59.99 

-120 

-120 

-140 

-150 

-160 

-170 

-180 

0.2 

0.3 

0.1 

0.2 

0.3 

0.0 

0.2 

-2.61 

-3.12 

-0.96 

1.21 

3.18 

5.65 

10.78 

Prolate 

Prolate 

Triaxial 

Triaxial 

Triaxial 

Spherical 

Oblate 

 

 

Nucleus 

A
X 

Spin I 

(ħ) 

Em 

(MeV) 

σm 

(mb) 
Em1

 

(MeV) 


1m
 

(mb) 

Em2

 

(MeV) 


2m
 

(mb) 

Em3

 

(MeV) 


3m
 

(mb) 

 

Shape 

152
Sm  

0 - - 19.43 36.52 25.38 69.86 - - Prolate 

10 - - 19.52 36.01 26.03 69.06 - - Prolate 

20 - - 18.43 34.52 20.85 34.95 21.19 35.21 Triaxial 

30 - - 19.04 32.18 21.16 32.83 22.46 31.42 Triaxial 

40 - - 19.25 32.48 21.51 32.89 23.16 32.15 Triaxial 

50 20.62 92.51 - - - - - - Spherical 

60 - - 20.04 63.44 23.86 36.53 - - Oblate 

 

Table 2 The resonant energies and peak cross sections for the nuclei 
152

Sm at different spins. 
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