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Abstract

The structural transitions of nuclei under extreme conditions of high spin

Keywords

and temperature is examined. The giant dipole resonance (GDR) built on

excited states is studied in Samarium nuclei. The static collective model for
GDR is used in this work to obtain the resonant energies and the
corresponding peak cross sections for **>Sm nuclei. Equilibrium shapes are
obtained by finite temperature version of the cranked Nilsson - Strutinsky
shell correction method. The shape correlation between the GDR cross
section and the predictions by CNS method is made. Results show that the
GDR cross section reflects the shapes obtained by CNS method and the
theoretical GDR cross sections are in agreement with the experimental

data.

High spin states of nuclei
Structural transitions
Giant dipole resonance
Cranked Nilsson -
Strutinsky method

Introduction

The giant dipole resonance (GDR) has been of central
interest in the study of photonuclear reactions. Attempts
have been made to delineate the systematics of photon
absorption by nuclei in general and of the giant electric
dipole resonance in particular, which dominates the
absorption process at energies between 10 and 30 MeV.
This corresponds to the fundamental frequency for
absorption of electric dipole radiation by the nucleus.
The semiclassical hydrodynamic model of Goldhaber
and Teller [1], Steinwedel and Jenson [2] considers this
as the oscillations of the neutrons against the protons.
The photoabsorption cross section has a peak at energy
between 10 and 30 MeV with a width of about 5 MeV.
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This peak with such large width is known as the giant
dipole resonance. The absorption or emission of
photons by a nucleus causes displacement of the
protons due to the electromagnetic field of the
photons.To keep the centre of mass at rest, the neutrons
move in the opposite direction. Due to the strong
attraction between protons and neutrons, separating
them in this way requires a substantial amount of
energy, which is the origin of a restoring force. This
restoring force induces an out-of-phase oscillatory
displacement of the protons and neutrons. The
displacement of charge in a fixed direction produces a
dipole moment in the system which couples strongly to
electromagnetic fields. The displacement vector can be
very simple making dipole modes collective. This
collectivity or concentration of a large fraction of the
oscillator strength in a small frequency interval, gave
this mode the name “Giant Dipole Resonance” (GDR).
Giant resonances in general are small amplitude, high
frequency, simple, collective modes of excitations of
nuclei. The study of giant resonances has been and
still is a major topic of research in nuclear physics.
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A ‘high spin state’ is a state of the nucleus possessing
very large value of angular momentum. In heavy ion
collisions compound nuclei can be formed at high
excitation energies and at very high angular
momentum states. At high spin the nuclei is expected
to undergo a variety of shape transitions. The two
fluid hydrodynamical model of the nucleus explains
the giant dipole resonance for spherical as well as for
deformed nuclei. The giant dipole resonance for
spherical nuclei consists of a single line known as the
Lorentz line and for prolate andoblate nuclei it
consists of two Lorentzian lines with two peaks
having a separation between them which is of the
order of the nuclear deformation B. In the case of
triaxial nuclei, the giant dipole resonance consists of
three Lorentzian lines with three peaks. When the
nucleus rotates with high spins, shape changes have
been found to occur and it would be of interest to
investigate how these shape changes affect their
GDR spectra. With this aim, the static collective
model [3,4] for GDR is used in this work to obtain
the resonant energies and the corresponding peak
cross sections for *Sm, nuclei. Equilibrium shapes
are obtained by finite temperature version of the
cranked Nilsson - Strutinsky shell correction method.

Absorption Cross Section using Static
Collective Model

The hydrodynamic static collective model [5]
assumes the nucleus to consist of two fluids, the

proton fluid with the density O, (r,t) and the
neutron fluid with the density O, (I‘,'[)_ The total

density of the nucleus, O (l’) is assumed to be time
— independent

po(r) = p,(r,t) + p,(r,1) (1)

This assumption comprises nuclear
incompressibility, or to be more precise, the neglect
of a coupling of giant resonance modes to nuclear
compression modes.

The photo — absorption cross section of nuclei plays
an important part in understanding the giant
resonances. The absorption cross section is defined
as the average energy absorbed per unit time per
incoming energy flux. The average incident flux of
the electromagnetic wave is

C o
Sae = —E 2
8 @)

where E is the electric field. Therefore the absorption
cross section o is given by
(E.D)

G _ S ave (3)

ave

where D is the dipole moment. We know that the
rotating nuclei are statically deformed. It was Danos
[3] and Okamato [4] who have applied the static
collective model for an axially symmetric ellipsoid.
Three degenerate giant dipole modes exist in the case
of spherical nuclei. In the case of an ellipsoid, these
three degenerate modes split into two, in such a way
that one mode oscillates along the long axis of the
ellipsoid and two degenerate modes oscillating in the
plane perpendicular to the long axis. As giant
resonances are standing sound waves in the nucleus,

we can expect normal modes of wavelengths A, & R;
where R; are the radii in the three ellipsoidal axes.
Therefore for the frequencies w,a Ri™ and hence the

energies are proportional to the reciprocal radii. It was
Danos who calculated the ratio of energies along the
axes aand b

E,

— 0.911% +0.089%0r

a

ﬁ =0.911(
E

a

a—>b

) (4)

Therefore, in the case of axially deformed nuclei, the
absorption cross section exhibits two peaks in the giant
resonance region. The separation between the peaks is
proportional to the deformation B.For a prolate
nucleus, the upper component of the giant resonance
contains twice as much integrated cross section as the
lower one (i.e > 0 or a > b) and vice versa for oblate
nuclei. Thus the form of the giant resonance absorption
cross section gives direct information not only on the
magnitude but also on the sign of the nuclear
deformation. The GDR cross section takes the form [4]

47me* NZ 2 lo’
= Q)

O = - .
CM A% zn2—2 (V- 0?)? +T%0?

The above egn. (2.5) exhibits a typical resonance
structure where the individual resonances have a
Lorentzian shape. By using the semi classical theory of
the interaction of photons with nuclei, the shape of a
fundamental resonance in the absorption cross section
is that of the Lorentz curve.

o(E) = g

1+kEZ—EEf/Eﬁﬂ] ©®

where the Lorentz parameters E,,, O , and I' arethe
resonance energy, peak cross section and full width at
half maximum respectively.
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In the case of spherical nuclei, the giant dipole
resonance consists of one Lorentz line. The peak cross
section O for spherical nuclei is given by [6]

2 Nz 1
= 60— x——(0.86(1
5 =602 x "2 L (086(1+ )

m
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where — m is the width at half maximum and « is an
adjustable parameters.

For statically deformed nuclei, the giant resonance
consists of two such Lorentz lines corresponding to the
absorption of photons which induce oscillations of the
neutron and proton fluids in the nucleus against each
other. In such cases,

o(E)=Y

= 1+|E’-€%frET?] ©

where i = 1, 2 correspond to the lower and higher
energy lines. The lower energy line corresponds to
oscillations along the longer axis and the higher energy
line corresponds to oscillations along the shorter axis. In
the case of triaxial nuclei, the giant dipole resonance
consists of three such Lorentz lines corresponding to the
oscillations along each of the non — degenerate axes.

. O mi

-

For deformed spheroidal nuclei, the peak cross sections

Om1 and Om2 are determined using

Ol + ol s = GO%N—AZ[O.86(1+ a)l (9)

When the areas under the Lorentz curves are considered,
for spherical nuclei, the area under the Lorentz curve is
given by

a

VA
j()'(E)jE =—o,I
) 2
For deformed nuclei, the assumed area under the two —
line Lorentz curve is given by
[04

IG(E)jE = %(Gmlrl + O'mzrz)
0

Also, it was predicted that the ratio of the area under the
lower — energy component of the giant resonance to that
under the higher energy component to be % for prolate

(10)

and 2 for oblate nuclei. The values for the area ratio

Ry, =onli/o,1,

can be obtained from the Lorentz parameters. It was
found that the area ratio R leads to some uncertainty
in its value for prolate and oblate nuclei [7].

There are more theories other than the elementary
hydrodynamic theory of the giant resonance that
include the coupling of quadrupole (surface)
oscillations to the main dipole (volume) vibrations of
the nucleus. Even though these do not affect the peak
photo absorption cross section, they affect the
smoothness of the giant resonance curves. Since the
present work aims at studying in general, the shape
changes of heavy nuclei at high spins, these couplings
are not considered.

Shapes of Excited Nuclei by Cranked

Nilsson Strutinsky Method

The Nilsson-Strutinsky method is one among the most
feasible way to do systematic calculations of the
nuclear energy as a function of deformation and/or
excitation. The Strutinsky’s method of shell corrections
[8-10] has been successfully used in calculations of the
nuclear deformation energy, with the concept dividing
the total nuclear binding energy in to a smooth liquid-
drop energy E,pm and an oscillating shell correction
energy SE.The shell energy calculations for non-
rotating case (1=0) assumes a single particle field in tri-

axial Nilsson model in the rotating frame [11]
H, =D h, (11)
where h is the triaxial Nilsson Hamiltonian given by

2

p 1 ¢ 2 2 2 2
h, :%Jrgm;a)i 7 +Cls+D(l —2<| >) (12)

The three oscillator frequencies ), are given by the

Hill Wheeler parameterization as

@, = @, eXp —‘/iﬁcos(y—zz] (13)
i Az 3 |

W, = W, eXP —‘/iﬂcos(y—in] (14)
i A 3 |
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@, = @, eXp [—\/;ﬂ coS 7} (15)
T

With the constraint of constant volume for equipotentials
03

®,0,0, = o = constant, (16)
where the oscillator frequency is chosen as

0 45.3

heo = ——2> MeV 17
T (AT 1 0.77) (17

In the expression for hg(in egn. 12), the term <I2> has

been doubled to obtain better agreement between the
Strutinsky-smoothed moment of inertia and the rigid rotor
value. Accordingly, the parameter D corresponding to a
mass region has to be predetermined with the help of
single-particle levels in the given mass region. The
Hamiltonian (12) is diagonalized in cylindrical
representation up to N=11 shells. Here Ny is the
harmonic oscillator principal quantum number.For the

rotating case (I # 0), the Hamiltonian becomes
H,=H,-®J,=>h,, (18)
where
H,=h-od,, (19)

[}

if it is assumed that the rotation takes place around the z-
axis. The single particle energy € and the wave function
@ are given by

h,g" =&"¢’

(20)
The spin projections are obtained as

(m)=(g"|5.|#") (21)
The total shell energy is given by

E, =2 (" lho|4°) =2 (e) (22)
where e =(e)—ho(m) (23)
Thus  E, =Y e’ +hol (24)
The total spin | from the shell model is given by

1= (m) (25)

The sums should be carried out over the occupied states
where the occupation is determined from the order of the

. w
quantities €; .

The total energy in cranked Nilsson Strutinsky
prescription is thus given by

0
E.(T.1;8,7)=E(,1;8,7)-TS=E(T,I; 8,7) + Eg o (26)
Where Er pwm is the rotating liquid drop energy

Results and Discussion

The investigation of structural changes of nuclei at
high excitation energy is a topic of current interest
in nuclear structure studies [12]. For studying the
shapes of hot rotating nuclei, the main experimental
technique used is to measure the GDR built on their
ground or excited states. Isovector giant dipole
resonance is one of the most important collective
modes of nuclei. There has recently been a great
deal of speculation concerning how the strength
might evolve in medium mass and heavy nuclei.
Theoretical studies are beginning to appear, but
there is as yet very little experimental data. The
GDR cross sections in excited nuclei show a very
interesting evolution as signature for shape
transitions. We have made an attempt to study such
shape transitions and to see how the GDR cross
section reflects these shapes.

To detect the shape transitions theoretically we have
obtained the GDR cross sections in **Sm as a
function of spin. In the calculations performed in
this work, the cranked Nilsson -Strutinskymethod is
first used to obtain the shape and deformation of the
considered nuclei as a function of spin [12]. The
Nilsson Hamiltonian is diagonalized in cylindrical
representation up to N = 11 shells using the
appropriate constants which are applicable for the
nuclear region considered. The energy eigen values
are generated for y ranging from -180° to -120° in
steps of -10° and B ranging from 0.0 to 1.2 in steps
of 0.1. The cranking frequency . is varied from 0.0
to 0.3 in steps of 0.03. The single particle routhians

are generated with spin values | = 0 71 to 60 71 for
52Sm nuclei.The Hill — Wheeler expressions for
frequencies have been used in the cranked Nilsson
model in order to take care of large deformations
involved in the calculations.

In the second phase of this work, the equilibrium
deformations B and y obtained by the Strutinsky
method is used to calculate the semi axes of the
nuclei considered and the results are presented in
table 1. The peak energies are evaluated using these
values and the peak cross sections corresponding to
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these peak energies are then obtained. The
calculated values of resonant energies and peak

cross sections for

the considered nuclei are

presented in table 2. The sample result of GDR
Lorentzian curve for **Smis presented in figure 1.
One can see from this figure that the two peaks
obtained at spin 60 h represents the oblate
spheroidal shape of the nucleus. It is to be noted

80 -

from the results presented in the tables 1land 2 that the
GDR cross sections beautifully reflect the nuclear
shape changes that take place at higher spins. Our
results show that the theoretical GDR cross sections are

in agreement with the experimental

data. The

experimental data in the higher energy region is quite
scattered and as a result of this the experimental GDR
width is quite larger.

Table 1 Shape transitions in ***Sm with spin

I(h) |vy(deg) | B E (MeV) | Shape
£ 0.00 | -120 0.2 |-2.61 Prolate
- 10.00 | -120 03 |-3.12 Prolate
19.99 | -140 0.1 -0.96 Triaxial
o 29.98 | -150 02 |121 Triaxial
& (vev> 39.99 | -160 0.3 3.18 Triaxial
Fig 1 GDR Lorentzian curve for ***Sm 49.97 | -170 1 0.0 | 5.65 Spherical
59.99 | -180 0.2 |10.78 Oblate
Table 2 The resonant energies and peak cross sections for the nuclei **>Sm at different spins.
Nucleus Spln | Em Om Em1 O-m1 Emz On, Em3 On, Shape
Ay () | (MeV) | (mb) | (MeV) | (mb) | (MeV) | (mb) | (MeV) | (mb)
0 - - 19.43 | 36.52 | 25.38 | 69.86 - - Prolate
10 - - 19.52 | 36.01 | 26.03 | 69.06 - - Prolate
, 20 - - 18.43 | 3452 | 20.85 | 3495 | 21.19 | 35.21 Triaxial
15,
Sm 30 - - 19.04 | 32.18 | 21.16 | 32.83 | 2246 | 31.42 Triaxial
40 - - 19.25 | 3248 | 2151 | 32.89 | 23.16 | 32.15 Triaxial
50 20.62 | 9251 - - - - - - Spherical
60 - - 20.04 | 63.44 | 23.86 | 36.53 - - Oblate
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