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Abstract 

 
The variation in nuclear deformation with angular momentum is considered 

in nuclei with A = 40 using the summation method extended to high spin. 

Pairing is not included in the formalism which is found to be of minor 

importance in light nuclei. Our results show that, the considered nuclei, 

undergo a shape transition from spherical to oblate and then to triaxial at high 

spin. For the extended calculations upto I = 60 ħ, Jacobi shape transitions are 

not obtained for the present candidates. Role of thermal fluctuations on the 

shape transitions of hot rotating nuclei is studied using Landau theory of 

shape transitions. With thermal fluctuations the averaged shape lead to 

triaxial at high excitation energy.   

non-collective degrees of freedom. 

Fluctuations in nucleus arise due to 

rotations and vibrations. 

 

In a collective rotation, the rotation axis is 

perpendicular to the symmetry axis. For a 

non-collective rotation, the rotation axis 

combines with the symmetry axis. The 

vibrations are relatively near the ground 

state at the beginning of the region of 

deformation. However they seem to go 

monotonically upward through the region 

of deformation, and downward at its end. 

On  the other hand the non-axial  

vibrations are  complex and show        

rather wide fluctuations. In ground state 

(E=0) or collective excitations there are       

no fluctuations whereas in non-collective 

excited     states,   there  are      fluctuations. 

 

Introduction 

 
The shapes of nuclei arise from basic correlations in nuclear 

matter. It is important to study these correlations and find the 

limits where they break down. This is possible to do by 

subjecting the nucleus to extreme conditions, such as high 

rotation and internal excitation energy, and studying the shapes 

which then results. Nucleus on excitation gives rise to prolate 

and oblate shapes of varying degrees of deformation. In some 

cases, tri-axial shapes also occurs. A nucleus can be excited in 

two ways; either by internal excitation or rotational excitation. 

Internal excitation of the nucleus causes disturbance in the shell 

effects and thereby brings out shape transitions whereas 

rotational excitation brings in an interplay of collective and 
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Nuclei at ground state are mostly spherical and 

prolate, oblate being less in number and ellipsoidal 

very scarce. But when they are excited to high angular 

momentum states one may come across fascinating 

shape transitions in them. Study of structural changes 

of nuclei at high excitation energy and large angular 

momentum has led us to a new phase in nuclear 

structure physics. The experimental analysis of giant 

dipole resonance built on excited states has started to 

yield information about the shape transitions that 

takes place in such nuclei. The combined effect of 

spin and temperature has created a variety of shape 

transition phenomena in nuclei. One such shape 

transition from non-collective oblate to highly 

deformed collective prolate or nearly prolate (triaxial) 

has been recently predicted and observed in case of 

light and medium mass nuclei [1-3]. This shape 

transition, which is similar to the Jacobi transition in 

gravitating rotating stars [4], has generated a lot of 

interest in recent times.  

 

The aim of this work is to study the shape transitions 

in excited nuclei such as 
40

Ca and 
40

Ar as a function 

of spin and temperature. Cranked Nilsson summation 

method [5] extended to high spin is used in the 

calculations. In order to investigate shape evolutions 

in hot rotating 
40

Ca and 
40

Ar nuclei and to check 

whether the Jacobian instability is obtainable with 

thermal fluctuations, we have used the Landau theory 

of shape transition. Recently, lots of measurements 

have been performed to measure giant dipole 

resonance cross sections which may be used as a 

signature specifying the shapes of nuclei at high 

excitation. This is also well known now that GDR 

cross section curves are not that clear as we expect in 

rotating nuclei, because in hot rotating nuclei, thermal 

fluctuations may make the GDR curves a little 

complicated to interpret. Due to the finite number of 

degrees of freedom it is necessary to include thermal 

shape fluctuations in order to obtain good fits to 

experimental observables such as the giant dipole 

resonance built on hot nuclei. The Landau theory 

offers a natural frame work in which these 

fluctuations are introduced. All the complicated 

nuclear shapes and their transitions as a function of 

spin and temperature can be easily and effectively 

tackled by Landau’s theory.  

 

Finite temperature mean field calculations are found 

to yield sharp shape transitions in spite of the finite 

size of the nuclei. It was, however, recognized that the 

inclusion of statistical thermal fluctuations would 

modify these sharp shape transitions. By recognizing 

this fact, in the second phase of this work, we have 

obtained the shape evolutions in hot rotating 
40

Ca and 
40

Ar nuclei incorporating the most important thermal 

fluctuations using Landau theory.  

 

 

 

The temperature dependent constants appearing in the 

Landau expression for the free energy are determined 

by using the free energy surfaces obtained by the 

cranked Nilsson Summation method [5]. Fig 1 show the 

relation between shape of nuclei rotating around the Z – 

axis and various values of axial deformation parameter 

in collective and single particle phase.  

 

 
 

Fig 1 The relation between shape of nuclei rotating     

around the z-axis and various values of            

deformation parameter  

 

The summation method for the study of rotating 

nuclei 

 
Nilsson model is a deformed shell model. It deals with 

the independent particle motion of the nucleons in a 

deformed nuclear potential. The potential is assumed to 

be anisotropic. The deformations of the nuclear field 

have great influence on the individual motion of the 

nucleons. The Mottelson – Nilsson summation method 

for the rotating light nuclei can be described as follows. 

In the case of rotating nucleus without internal 

excitation, the nucleons move in a cranked Nilsson. 

potential with the deformation described by β and γ [5].  

 

The cranking is performed around one of the principal 

axes, the z – axis and the cranking frequency is given 

by ωc. In these calculations, the triaxial Nilsson model 

in the rotating frame is used. If h
0
 is the tri – axial 

Nilsson Hamiltonian then, in this system of reference, 

the total Hamiltonian is given by,  

 

c o

zh h j
                               (1) 

where 

2 3
2 2 2 2

1

1
. [ 2 ]

2 2

o

i i

i

p
h m x Cl s D l l

m




           (2) 
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The single-particle energies in the rotating system 
c

ie
 and the wave functions c

i

  are obtained. 

From the diagonalization, 

 c c c c

i i ih e
            (6) 

The single-particle energies in the laboratory system ei 

and the single-particle spin contributions mi are 

calculated as expectation values. The calculations have 

been extended to have large spin values with 

deformation upto 1.0. 

 ei         =      c co

i ix h x
 

   (7) 

and 

mi      =     c c

i z ix J x
 

    (8) 

The total energy is then obtained as 

    E    =    E  , , c i c

i

e E       (9) 

where  c

i i c i

i i

e e h m
     

with the total spin given by 

I  =   I  , , i

i

m                (10) 

The summation should be carried out over the 

occupied states where the occupation is determined 

from the order of the quantities cw

ie . The factor Ec in 

eqn. (9) is the nuclear Coulomb energy which depends 

on deformation. For fixed spin I, one can construct an 

energy surface from equation (9) and (10) and the 

minima in these surfaces then determine the shape and 

deformation of the given nucleus. 

 

The nuclear Coulomb energy, should, in principle, be 

treated as a residual force for the particles moving in 

the single – particle potential (1). The most accurate 

procedure is, however, very cumbersome, and one, 

therefore determines the Coulomb energy of a 

homogenous proton distribution with an ellipsoidal 

shape. The exact expression for the Coulomb energy of 

an ellipsoid Ec in units of Coulomb energy of a sphere 
(0)

cE  was derived by Pal [11], Gotz et. al [12] and 

Leander [13]. The Leander’s expression for the ratio 

Bc is used in the present calculations. 

 

Bc = (0)

c

c

E

E
 

0

0

1
2 2 2

R

b c

 Fc                (11) 

Where a, b, c denote the semi axes of the         

ellipsoid, arranged so that c < a < b; 0

0R  is the    

radius  of  the  equivalent sphere given by 1.16 A
1/3

 fm.            

   

 

 

The three oscillator frequencies ωi are given by the Hill - 

Wheeler parameterization as 

 5 2
exp cos

4 3
x o    



  
    

  

   (3a) 

5 4
exp cos

4 3
y o    



  
    

  

  (3b) 

and      5
exp cos

4
z o   



 
  

 

                 (3c) 

With the constraint of constant volume for 

equipotentials 
3. . o

x y z o      =   constant.        (4) 

For the Nilsson parameter κ,  and o

o  the following 

values are chosen [6] for the considered mass region 

around A ~ 46. 

 κ    =       0.093 

      =       0.15 

  0 1 3

0 45.3 0.77MeV A            (5) 

Since the considered nuclei fall equal or very close to N 

= Z regime, same values are used for protons as well as 

neutrons. It may be noted that in h
0
 (eqn. 2) the factor in 

front of <l
2
> has been doubled, following ref. [7], from 

the conventional value of 0.5 [8] to obtain better 

agreement between the Strutinsky smoothed moment of 

inertia and the rigid rotor value (here within 10%). 

Accordingly the parameter D has been redetermined 

with the help of single – particle levels in the mass 

region indicated. The Hamiltonian (1) is diagonalized in 

cylindrical representation [9] upto N = 8 shells using the 

matrix elements given in ref. [10]. This is in contrast to 

the Strutinsky method wherein the diagonalization upto 

about     N = 11 shells is required. Thus there is an 

enormous reduction in computation time in the present 

method.  

 

The calculations have been performed in the range β = 

0.0 to 0.6, γ = -180
o
 to – 120

o
 in steps of Δβ = 0.1 and 

Δγ = -2
o 

respectively for the first calculations.
 
The 

cranking frequency ωc is varied from 0.0 
o

o upto 0.3 

o

o  in steps of Δω = 0.03 
o

o .  Scaling ω with the 

oscillator constant 
o

o  has now the advantage that all 

terms in h
ωc

 (eqn. 1) are proportional to 
o

o  so that all 

calculations of single-particle states and energies have 

to be performed only once in a given mass range. 
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with J, R and D suitably defined to absorb various 

numerical constants. The R term has the leading 

shape dependence of the rigid-body moment of 

inertia, while the D term alone would represent the 

leading shape dependence of the irrotational moment 

of inertia. For   dependent terms in eqn. (17), as in 

reference [16], the rigid-body moment of inertia is 

assumed, setting 

                    

2

0 0

2

5
J m R  , 

                    
1/ 2

0

5

16
R J



 
  
 

    and          (19) 

                             1 0D J    

In this study, the Landau constants A(T), B(T) and 

C(T) are evaluated by least square fitting with the  

= 0 free energy surfaces obtained by Summation 

method. This method has the advantage that the 

accuracy of the fitting can be checked by the 

resulting error bars. In the Summation method, the 

free energy is computed as,  

 

  ( , ; , ) ( , ; , ) ( , ; , )F T I E T I TS T I        (20) 

Here, S is the total entropy of the fermion gas and is 

given by  

      
1

[ ln (1 ) ln(1 )]i i i i

i

S f f f f




              (21) 

 

Expressed in terms of Fermi-Dirac occupation 

numbers  

                       
1

( )
1 exp[ ]

i

i

f
e

T

 





        (22) 

 

The chemical potential λ is obtained with the 

constraint 
1

i

i

f N




 , where N is the total number of 

particles. It is to be noted that, in this method there is 

no need to renormalize the single-particle level 

density at finite temperature. 

 
Thermal fluctuations and their effect on the shape 

parameters 

  

For a nucleus with finite number of particles and at 

moderately high temperatures, thermal fluctuations 

produce an average shape, which is qualitatively 

different from equilibrium shapes predicted by mean 

field theories [18-22]. Thermal fluctuations in the 

collective parameters were first considered by 

Moretto [23] (for the pairing gap parameter) and later 

on for the shape parameters by several authors 

[24,25].  These  shape  fluctuations    can 

significantly alter the properties of  hot rotating 

nuclei. The probability of finding the nucleus  in  
  

Fc  is  the  elliptic  integral of  the  first  kind  given by, 

Fc  =  F (φ, kc)                 (12) 

where φ  =  arc sin 
 

1
2 2 2b c

b


     (13) 

and      
2

ck  = 
 
 

2 2

2 2

b a

b c




     (14) 

For numerical calculations of the elliptic integral, the 

method of arithmatico – geometric mean together with 

Leander’s transformation [14] is used. For spheroidal 

shapes, these integrals reduce to particularly simple 

forms [15]. The diffuseness correction to the Coulomb 

energy is omitted since it is shown that [7, 11] it is 

independent of deformation and hence cancels out 

when the total energy is normalized such that E (β = 0, 

γ = 0) = 0. One can construct an energy surface for 

fixed I from eqns. (9) and (10). The minima in these 

surfaces then give the equilibrium deformations of the 

considered light nuclei. An important feature of light 

nuclei is that the pairing correlations appear to be of 

minor importance and hence they have been neglected 

in the present study. 

 

It is to be noted that the above method is not only 

economical, but also it automatically accounts for the 

change of diffuseness with spin which is very important 

for light nuclei. 

 

Landau theory of shape transitions 

 

For finite temperatures, one should also consider the 

thermal fluctuations which create shapes different from 

the most probable shape obtained by minimizing the 

free energy  F = E - TS. These shape fluctuations can 

significantly alter the properties of hot rotating nuclei. 

According to Landau theory [16,17], the free energy at 

0   can be written to fourth order in  as 

 
2 3 4( , 0, , ) ( ) ( ) ( ) cos3 ( )F T Fo T A T B T C T              (15) 

 

Where the coefficients Fo, A, B and C depend on the 

temperature T and  and  are the usual intrinsic 

deformation parameters. The free energy which 

depends on  and  will also depend on the orientation 

angles relative to the rotation axis   for the rotating 

case  0. Extending Eqn. (15) to the rotating case 

with   parallel to Z axis, 

21
( , , , ) ( , 0; , ) ( , , )

2
zzF T F T J T          

     (16)
 

For fixed spin this can be Legendre transformed as 
2

( , ; , ) ( , 0; , )
2 ( , , )zz

I
F T I F T I

J T
   

 
  

 

(17) 

where  
2 2 2

0 1( ) 2 ( ) cos 2 ( ) 2 ( ) sinzzJ J T R T J T D T            (18) 
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in the calculations which are very important for the 

considered in light nuclei. 

 

The energy eigen values are generated for γ ranging 

from -180
o
 to -120

o
 in steps of -10

o
 and β ranging 

from 0.0 to 0.6 in steps of 0.1 for the first 

calculations. The cranking frequency ωc is varied 

from 0.0 to 0.3 in steps of 0.03. The single particle 

routhians are generated with spin values I = 0 ħ to 24 

ħ in steps of 2 ħ. Figs 2 and 3 show the shape 

transitions as a function of spin for 
40

Ar and 
40

Ca 

respectively.  

 

 
2 

 
3 

 

Figs 2,3  Shape transitions as a function of spin upto 

24 ħ for 
40

Ar and 
40

Ca respectively. 

 

It is noted from Fig 2 that, the 
40

Ar nucleus is oblate 

in shape at its ground state with deformation β = 0.1.   

It exists in the same shape and deformation as the 

angular momentum increases to 4 ħ. The same oblate 

configuration persists with spin upto 16 ħ. At a spin 

of 20 ħ, there occurs a shape transition from oblate 

(γ=-180
o
, β=0.3) to triaxial (γ=-160

o
, β=0.3). On 

further increase of spin to 24 ħ, the nucleus stays in 

the triaxial shape with axilality changes to -150
o
.  

This indicates that the 
40

Ar nuclei, starting from 

oblate in its ground state, undergo a shape transition 

to triaxial at high excitation energy.  The result is 

also presented in table 1. Fig 3 represents the shape 

transition in 
40

Ca as a function of angular 

momentum. 
40

Ca is known as a doubly magic   nuclei 

a state with  deformation 2 is characterized by the 

free energy F(2; I,T) is, 

2( ; , ) /

2( ; , )
F I T T

I T e 




    (23) 

 

with       
2 2( ; , ) ( ; , )F I T E I T TS     

Using classical statistics, therefore, the ensemble 

average of an observable X which is deformation – 

dependent, is given by an average over all possible 

shapes. 

 
2

2

( ; , ) /

2 2

( ; , ) /

2

( ; , ) [ ]
( , )

[ ]

F I T T

F I T T

X I T e D
X I T

D e







 





 











   (24) 

where D[2] is the volume element in the deformation 

space.  Using equation (24), the ensemble average of  

is,  
4

4

( , ) sin 3

( , ) sin 3

d d

d d

      
 

     


 





    

(25) 

Similarly the ensemble average of  is 

     
4

4

( , ) sin 3

( , ) sin 3

d d

d d

      
 

     


 





   

(26) 

where 4 sin3 d d     is the volume element as 

given in the Bohr rotation – vibration model. Equation 

(23) shows that when the temperature is zero, there are 

no thermal shape fluctuations. Then the averaged shape 

is identical to the most probable shape. But at finite 

temperature, the averaged shape may be different from 

the most probable shape [18-25]. 

 

Results and discussion 

 

The investigation of structural changes of nuclei at high 

excitation energy is a topic of current interest in nuclear 

structure studies. To detect the shape transitions 

theoretically we have chosen two nuclei namely in 
40

Ar 

and 
40

Ca. In the calculations performed in this work, 

the cranked Nilsson Summation method is used to 

obtain the shape and deformation of the considered 

nuclei as a function of spin. The Nilsson Hamiltonian is 

diagonalized in cylindrical representation up to N = 8 

shells using the appropriate constants which are 

applicable for the nuclear region considered. 

 

Shape transitions studied as a function of spin 
 

The Hill – Wheeler expressions for frequencies have 

been used in the cranked Nilsson model in order to take 

care of  large deformations involved in the calculations. 

Change  of  surface  diffuseness with  spin is    included 
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given in the tables 3 and 4. This indicates that the 

considered light nuclei is not fertile to harvest the 

Jacobi shape transitions. 

 

Role of thermal fluctuations 
 

For finite temperature, one should also consider 

thermal fluctuations which create shapes different 

from   the   most   probable   shape   obtained       by  

 

 
a 

 
b 

 
c 

Fig 6 (a-c) Shape evolutions of 
40

Ar as a function of 

spin and temperature with thermal   fluctuations for 

temperatures T = 0.5, 1.5 and 2.5 MeV respectively. 
 

and it should be spherical in shape at its ground state. 

Our calculation clearly reproduces the same behavior 

and it happens upto a spin of 4 ħ. At 8 ħ, the shape of 

the nucleus changes from spherical to oblate. It stays in 

the oblate shape upto I = 12 ħ and then turns into 

triaxial shape at high spin. More elongated triaxial 

shape is obtained at I = 24 ħ. The equilibrium shape 

and deformation is also given in table 2.  In order to 

check whether the Jacobi shape transitions occur in the 

considered nuclei, we have extended our calculations 

with spin up to 60 ħ. Figures 4 and 5 represents the 

shape transitions as a function of spin in 
40

Ar and 
40

Ca 

respectively with extended spin upto 60 ħ.It is noted 

that, in the case of 
40

Ar, starting from the oblate ground 

state the nucleus turn into triaxial at I=20 ħ (γ=-60
o
).  

At I=40 ħ, the shape changes to nearly prolate   (γ=-

130
o
) with  β=0.4. It stays in the same phase up to I=60 

ħ with elongation β=0.6.    The  Jacobi  shape  

transition  from    non-collective 

 

 
4 

 
5 

Fig 4,5  Shape transitions as a function of spin upto 60 

ħ for 
40

Ar and 
40

Ca respectively. 
 

oblate to collective prolate (or nearly prolate) with 

large deformation is not obtained in this nucleus but 

instead the transition is obtained via triaxial. In the case 

of 
40

Ca also, the transition leads to triaxial and the clear 

Jacobi transition is not obtained. These results are   also  
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The temperature dependent constants are evaluated 

by cranked Nilsson Sumation method. Figs 6(a-c) 

shows the shape evolutions in hot rotating 
40

Ar 

nucleus at temperatures T=0.5, 1.5 and 2.5 MeV 

respectively. It is noted from these figures that when 

thermal fluctuations are included the shapes turn into 

triaxial and the deformation increases as a function 

of spin. Almost the same behaviour is obtained for   
40

Ca which are given in Figs 7(a-c). Thus it is clear 

that, the thermal fluctuations create mostly triaxial 

averaged shapes. 

     

Conclusions 
 

In this paper we have presented the results of shape 

evolutions in light nuclei such as 
40

Ar and 
40

Ca  as a 

function of spin. Cranked Nilsson Summation 

method is used in the calculations with limited spin 

in the first calculations. The considered nuclei 

undergo a shape transition from oblate to triaxial at 

high spin. In order to look for the Jacobi type shape 

transition in these nuclei, we have extended our 

calculations upto a spin of 60 ħ. The sharp Jacobi 

shape transitions are not obtained in the considered 

nuclei in the present calculations. The role of thermal 

fluctuations on the shape transitions of hot rotating 

nuclei is studied by using the Landau theory of shape 

transitions. It is seen that thermal fluctuations create 

mostly triaxial averaged shapes unlike the most 

probable prolate, oblate or spherical shapes usually 

obtained without considering thermal fluctuations. 

 

Table 1 Shape and deformation of even nuclei such 

as 
40

Ar  considered at different spins upto 24 ħ. 

 

I (ħ) β γ 

0 0.1 -180
0
 

2 0.1 -180
0
 

4 0.1 -180
0
 

6 0.1 -180
0
 

8 0.2 -180
0
 

10 0.2 -180
0
 

12 0.3 -180
0
 

14 0.3 -180
0
 

16 0.3 -180
0
 

18 0.3 -180
0
 

20 0.3 -160
0
 

22 0.4 -160
0
 

24 0.4 -150
0
 

 

 

 

minimizing the free energy. The nuclei considered here 

lie in the lighter region wherein the thermal fluctuations 

are expected to be more pronounced because of the 

fewer number of nucleons involved. In the second 

phase of this work, we have used the Landau theory of 

shape transitions to obtain the shape evolutions in hot 

rotating 
40

Ar and 
40

Ca nuclei. In this case the expansion 

of the Landau free energy is done upto fourth power of 

β.  

 

 
a 

 
b 

 
c 

Fig 7 (a-c) Shape evolutions of  
40

Ca as a function of 

spin and temperature with thermal   fluctuations for 

temperatures T = 0.5, 1.5 and 2.5 MeV respectively. 
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Table 2 Shape and deformation of even nuclei such as  
40

Ca  considered at different spins upto 24 ħ. 

 

I (ħ) β γ 

0 0.0 -180
0
 

2 0.0 -180
0
 

4 0.0 -180
0
 

6 0.0 -180
0
 

8 0.1 -180
0
 

10 0.1 -180
0
 

12 0.2 -180
0
 

14 0.1 -160
0
 

16 0.1 -180
0
 

18 0.2 -160
0
 

20 0.1 -180
0
 

22 0.2 -1700 

24 0.4 -1600 

 

Table 3 Shape transitions in 
40

Ar with extended spins 

upto 60 ħ. 

 

I (ħ) β γ 

0 0.1 -180
0
 

10 0.2 -180
0
 

20 0.3 -160
0
 

30 0.4 -140
0
 

40 0.3 -130
0
 

50 0.4 -130
0
 

60 0.6 -130
0
 

 
Table 4 Shape transitions in  

40
Ca  with extended spins 

upto 60 ħ. 

 

I (ħ) β γ 

0 0.0 -180
0
 

10 0.1 -180
0
 

20 0.1 -180
0
 

30 0.4 -160
0
 

40 0.4 -150
0
 

50 0.5 -140
0
 

60 0.6 -140
0
 

 

 

 


