On contra sarps-continuous functions in topological spaces

T. Shyla Isac Mary, A. Subitha*
Department of Mathematics, Nesamony Memorial Christian College, Marthandam-629 165,Tamil Nadu, India

Received 10 February, 2016; Accepted 25 March 2016
Available online 25 March 2016

Abstract

In 1970, Levine introduced generalized closed sets in topological spaces in order to extend many of the important properties of closed sets to a large family. In the recent past, there has been considerable interest in the study of various forms of generalized closed sets. The authors introduced sarps closed sets in topological spaces. In this, we introduce a new class of function called contra $s \alpha r p s$-continuous functions by using $s \alpha r p s$-closed sets and characterize their basic properties. Further the relationship between this new class with other classes of existing contra continuous functions are established. Also we define contra sarps-irresolute, perfectly contra sarps-irresolute and almost contra sarps-continuous functions and we have given the relationship of these three functions with contra sorps continuous functions.

1. Introduction

In 1968, M. K. Singal and A. R. Singal [1] introduced almost continuous mappings. In 1986, T. Noiri introduced the concept of perfectly continuous. In 1996, J.Dontchev [2] introduced the notion of contra continuity. In 1999, J. Dontchev and T. Noiri [3] introduced new class of functions, called contra semi-continuous functions. The authors introduced sarps-closed sets in topological spaces. The purpose of this paper is to introduce a new class of functions, namely contra sorps-continuous functions in topological spaces.

[^0]
2. Preliminaries

Throughout this paper X and Y represent the topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a topological space $\mathrm{X}, c l \mathrm{~A}$ and $\operatorname{int} \mathrm{A}$ denote the closure of A and the interior of A respectively. X । A denotes the complement of A in X . We recall the following definitions and results.

Definition 2.1: A subset A of a space X is called
(i) semi-open [19] if $\mathrm{A} \subseteq c l$ int A and semiclosed if int clA $\subseteq \mathrm{A}$.
(ii) α-open [24] if $\mathrm{A} \subseteq$ int cl int A and α closed if $c l$ int $c l \mathrm{~A} \subseteq \mathrm{~A}$.
(iii) π-open [4] if A is the union of regular open sets and π-closed if A is the intersection of regular closed sets.
The semi-closure (resp. pre-closure, resp. semi-preclosure, resp. α-closure, resp. b-closure) of a subset A of X is the intersection of all semi-closed (resp. preclosed, resp. semi-pre-closed, resp. α-closed, resp. b-closed) sets containing A and is denoted by sclA (resp. $p c l \mathrm{~A}$, resp. $s p c l \mathrm{~A}$, resp. $\alpha c l A$, resp. $b c l \mathrm{~A}$).

Definition 2.2: A subset A of a space X is called g-closed [20] (resp. rg-closed [26], resp. αg-closed [21], resp. gs-closed [5], resp. gp-closed [22], resp. gpr-closed [13], resp. gsp-closed [8], resp. πg-closed [11], resp. $\pi g p$-closed [27], resp. $\pi g \alpha$-closed [17], resp. $\pi g b$-closed [4], resp. rwg-closed [35], resp. gbclosed [1], resp. $\mathrm{g}^{*} \mathrm{p}$-closed [36], resp. rgb-closed [23], resp. $*$ g-closed [37]) if $c l \mathrm{~A} \subseteq \mathrm{U}$ (resp. clA \subseteq U , resp. $\alpha c l A \subseteq \mathrm{U}$, resp. sclA $\subseteq \mathrm{U}$, resp. pclA \subseteq U , resp. $p c l \mathrm{~A} \subseteq \mathrm{U}$, resp. spcl $\mathrm{A} \subseteq \mathrm{U}$, resp. $c l \mathrm{~A} \subseteq \mathrm{U}$, resp. $p c l \mathrm{~A} \subseteq \mathrm{U}$, resp. $\alpha c l A \subseteq \mathrm{U}$, resp. $b c l \mathrm{~A} \subseteq \mathrm{U}$, resp. $c l \operatorname{int} \mathrm{~A} \subseteq \mathrm{U}$, resp. $b c l \mathrm{~A} \subseteq \mathrm{U}$, resp. pclA \subseteq U , resp. $b c l \mathrm{~A} \subseteq \mathrm{U}$, resp. $c l \mathrm{~A} \subseteq \mathrm{U}$) whenever $\mathrm{A} \subseteq$ U and U is open (resp. regular open, resp. open, resp. open, resp. open, resp. regular open, resp. open, resp. π-open, resp. π-open, resp. π-open, resp. π open, resp. regular open, resp. open, resp. g-open, resp. regular open, resp. \hat{g}-open.).

Definition 2.3 [33]

A subset A of a space X is called semi α-regular presemi closed (briefly sarps-closed) if $s c l \mathrm{~A} \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\alpha r p s$-open.
The complements of the above mentioned closed sets are their respective open sets. For example, a subset B of a space X is generalized open (briefly g-open) if $\mathrm{X} \backslash \mathrm{B}$ is g-closed.

Definition 2.4

(i) A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called [6] if $\mathrm{f}^{-1}(\mathrm{~V})$ is closed in (X, τ) for every closed subset V of (Y, σ).
(ii) A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called perfectlycontinuous [25] if $\mathrm{f}^{-1}(\mathrm{~V})$ is clopen in (X, τ) for every closed subset V of (Y, σ).
(iii) A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called regular set connected [14] if $\mathrm{f}^{-1}(\mathrm{~V})$ is clopen in (X, τ) for every regular closed subset V of (Y, σ).
(iv) almost continuous[31] if $\mathrm{f}^{-1}(\mathrm{~V})$ is closed in (X, τ) for every regular closed subset V of (Y, σ).

Definition 2.5[29]

(i) A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called $s \alpha r p s$ -
continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is $s \alpha r p s$-closed in (X, τ) for every closed subset V of (Y, σ).
(ii) A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called sorps irresolute if $\mathrm{f}^{-1}(\mathrm{~V})$ is sarps-closed in (X, τ) for every $s \alpha r p s$-closed subset V of (Y, σ).
(iii) A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called almost $s \alpha r p s$-continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is $s \alpha r p s$-closed in (X, τ) for every regular closed subset V of (Y, σ).

Definition 2.6

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called $s \alpha r p s$-closed (resp. sorps -open) if for every closed (resp. open) set U of (X, τ), the set $\mathrm{f}(\mathrm{U})$ is $\operatorname{s\alpha rps}$-closed (resp. s $\alpha r p s$ open) in (Y, σ).

Definition 2.7

A function $\mathrm{f}: \quad(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called contra continuous [9] (resp. contra semi-continuous [10], resp. contra π-continuous [12], resp. contra α-continuous [16], resp. contra g-continuous [6], resp. contra rgcontinuous [34], resp. contra αg-continuous [3], resp. contra gs-continuous [14], resp. contra gp-continuous [7], resp. contra gpr-continuous [14], resp. contra gspcontinuous [3], resp. contra πg-continuous [12], resp. contra $\pi g p$-continuous [7], resp. contra $\pi g b$ continuous [32], resp. contra rwg-continuous [34], resp. contra gb-continuous [2], resp. contra $\mathrm{g}^{*} \mathrm{p}$-continuous [3], resp. contra $\pi g \alpha$-continuous [17], resp. contra $* g$ continuous [34], resp. contra rgb-continuous [30]) if f^{-} ${ }^{1}(\mathrm{~V})$ is closed (resp. semi-closed, resp. π-closed, resp. α-closed, resp. g-closed, resp. rg-closed, resp. αg-closed, resp. gs-closed, resp. gp-closed, resp. gprclosed, resp. gsp-closed, resp. πg-closed, resp. $\pi g p-$ closed, resp. $\pi g b$-closed, resp. rwg-closed, resp. gbclosed, resp. $\mathrm{g}^{*} \mathrm{p}$-closed, resp. $\pi g \alpha$-closed, resp. ${ }^{* g}$ closed, resp. rgb-closed) in (X, τ) for every open subset V of (Y, σ).

Lemma 2.8

Every closed set is sarps-closed.

Definition 2.9 [18]

A space X is called locally indiscrete if every open subset of X is closed.

Contra $S \alpha R P S$-continuous functions

Definition 3.1

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called contra $s \alpha r p s$ continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is $s \alpha r p s$ - closed in (X, τ) for
every open subset V of (Y, σ).

Proposition 3.2

If A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ from a topological space X into a topological space Y is contra-continuous, then it is contra sarps-continuous.

Proof

Assume that the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is contracontinuous. Let V be an open subset of (Y, σ). Since f is contra-continuous, $\mathrm{f}^{-1}(\mathrm{~V})$ is closed in (X, τ). By Lemma 2.8, $\mathrm{f}^{-1}(\mathrm{~V})$ is sorps-closed in (X, τ). Hence f is contra $s \alpha r p s$-continuous.
Converse of the above Proposition need not be true as shown in the following example.

Example 3.3

Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topology $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\mathrm{Y}=\{\mathrm{p}, \mathrm{q}\}$ with topology $\sigma_{=}\{\phi,\{\mathrm{p}\}, \mathrm{Y}\}$. Let $\mathrm{f}:$ $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{c})=\mathrm{q}, \mathrm{f}(\mathrm{b})=\mathrm{p}$. Then f is contra sorps-continuous, but not contracontinuous.

Proposition 3.4

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then
(i) if f is contra semi-continuous, then f is contra sarps-continuous.
(ii) if f is contra -continuous, then f is contra continuous.
(iii) if f is contra -continuous, then f is contra continuous.

Proof

Suppose f is contra semi-continuous (resp. contra π continuous, resp. contra α-continuous). Let V be an open subset of (Y, σ). Since f is contra semi-continuous (resp. contra π-continuous, resp. contra α continuous), $\mathrm{f}^{-1}(\mathrm{~V})$ is semi-closed (resp. π-closed, resp. α-closed) in (X, τ). Using Proposition 3.2 of [33], $\mathrm{f}^{-1}(\mathrm{~V})$ is sarps -closed in (X, τ). Then by using Definition 3.1, f is contra sarps-continuous. This proves (i), (ii) and (iii).
The reverse implications need not be true as shown in the Example 3.5.

Example 3.5

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=$ $\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$.
Then f is contra sarps-continuous, but not contra semi-continuous, not contra π-continuous, not contra α-continuous.

Proposition 3.6

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then
(i) if f is contra $s \alpha r p s$-continuous, then f is contra gscontinuous.
(ii) if f is contra sorps-continuous, then f is contra rgb-continuous.
(iii) if f is contra sorps-continuous, then f is contra $\pi g b$-continuous.
(iv) if f is contra sorps-continuous, then f is contra gb-continuous.
(v) if f is contra sorps-continuous, then f is contra gsp-continuous.

Proof

Suppose f is contra sarps-continuous. Let V be an open subset of (Y, σ). Since f is contra sarps continuous, $\mathrm{f}^{-1}(\mathrm{~V})$ is sorps -closed in (X, τ). Then by using Proposition 3.4 of [33], $\quad \mathrm{f}^{-1}(\mathrm{~V})$ is gs-closed (resp. rgb -closed, resp. $\pi g b$-closed) in (X, τ). Therefore f is contra gs-continuous (resp. contra rgbcontinuous, resp. contra $\pi g b$-continuous). This proves (i), (ii) and (iii). Since gs-closed \Rightarrow gb-closed \Rightarrow gspclosed, the proof for (iv) and (v) follows from (i).
The reverse implications need not be true as shown in the Example 3.7.

Example 3.7

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with topologies $\tau=\{\phi,\{a\},\{b\},\{a, b\},\{b, c\},\{a, b, c\}, X\} \quad$ and $\sigma=\{\phi,\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$ on X and Y respectively.
Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $f(a)=b, f(b)=a, f(c)=b, f(d)=c$. Then f is contra gscontinuous, contra rgb-continuous, contra $\pi g b$ continuous, contra gb-continuous, contra gspcontinuous, but not contra $s \alpha r p s$-continuous.
The concept contra sarps-continuous is independent from the concepts contra αg-continuous, contra πg continuous, contra gp-continuous, contra $\pi g p$ continuous, contra $\pi g \alpha$-continuous, contra $\mathrm{g}^{*} \mathrm{p}$ continuous, contra rg-continuous, contra g -continuous, contra gpr-continuous, contra rwg-continuous, contra *g-continuous as shown in the following examples.

Example 3.8

From Example 3.7, $\mathrm{f}^{-1}(\{\mathrm{a}, \mathrm{c}\})=\{\mathrm{b}, \mathrm{d}\}$ is αg closed, πg-closed, gp-closed, $\pi g p$-closed, $\pi g \alpha-$ closed, $\mathrm{g}^{*} \mathrm{p}$-closed in (X, τ). Hence f is contra αg continuous, contra πg-continuous, contra gpcontinuous, contra $\pi g p$-continuous, contra $\pi g \alpha-$ continuous, contra $\mathrm{g}^{*} \mathrm{p}$-continuous, but not contra sarps-continuous.

Example 3.9

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\} \quad$ and $\sigma=\{\phi,\{\mathrm{b}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})$ $=\mathrm{a}, \quad \mathrm{f}(\mathrm{c})=\mathrm{b}, \mathrm{f}(\mathrm{d})=\mathrm{c}$. Then f is contra sorps continuous, but not contra αg-continuous, not contra πg-continuous, not contra gp-continuous, not contra $\pi g p$-continuous, not contra $\mathrm{g}^{*} \mathrm{p}$-continuous.

Example 3.10

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{d}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{d}, \mathrm{f}(\mathrm{c})=\mathrm{a}, \mathrm{f}(\mathrm{d})=\mathrm{c}$. Then f is contra sorps-continuous, but not contra g-continuous.

Example 3.11

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $f(a)=c, f(b)=d, f(c)=b, f(d)=a$. Then f is contra g-continuous, but not contra $s \alpha r p s$-continuous.

Example 3.12

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies
$\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{c}\}, \mathrm{Y}\}$
on X and Y respectively. Let the function f : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=$ b. Then f is contra sorps-continuous, but not contra gpr-continuous.

Example 3.13

Let $X=Y=\{a, b, c\}$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $f(a)=b, f(b)=c, f(c)=a$. Then f is contra gpr-continuous, but not contra sorps-continuous.

Example 3.14

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{c}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function f : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=$ $\mathrm{d}, \mathrm{f}(\mathrm{d})=\mathrm{a}$. Then f is contra $s \alpha r p s$-continuous, but not contra rwg-continuous and contra $* \mathrm{~g}$-continuous.

Example 3.15

Let $X=Y=\{a, b, c, d\}$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\} \quad$ and $\sigma=\{\phi,\{\mathrm{c}, \mathrm{d}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{c}$, $\mathrm{f}(\mathrm{b})=\mathrm{d}, \mathrm{f}(\mathrm{c})=\mathrm{a}, \mathrm{f}(\mathrm{d})=\mathrm{c}$. Then f is contra rwgcontinuous and contra $* g$-continuous, but not contra sorps -continuous.

Example 3.16

Let $X=Y=\{a, b, c\}$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}, \mathrm{X}\} \quad$ and $\sigma=\{\phi,\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{b}$, $\mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{d}, \mathrm{f}(\mathrm{d})=\mathrm{a}$. Then f is contra rg continuous, but not contra $s \alpha r p s$-continuous.

Example 3.17

Let $X=Y=\{a, b, c, d\}$ with topologies $\tau=\{\phi,\{a\},\{b\},\{a, b\},\{a, b, c\},\{a, b, d\}, X\} \quad$ and $\sigma=\{\phi,\{\mathrm{d}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\quad \mathrm{f}(\mathrm{a})=$ $\mathrm{d}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{b}, \mathrm{f}(\mathrm{d})=\mathrm{a}$. Then f is contra $\operatorname{s\alpha rps}$ continuous, but not contra rg-continuous.
The concept of sarps-continuity and contra sarps -continuity are independent of each other as shown in the Examples 3.18 and 3.19.

Example 3.18

Let $X=Y=\{a, b, c, d\}$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\} \quad$ and $\sigma=\{\phi,\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{b}$, $\mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}, \mathrm{f}(\mathrm{d})=\mathrm{c}$. Then f is $s \alpha \operatorname{\alpha rps}$ continuous, but not contra $s \alpha r p s$-continuous.

Example 3.19

Let $X=Y=\{a, b, c, d\}$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}, \mathrm{d}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{d}, \mathrm{f}(\mathrm{c})=\mathrm{b}, \mathrm{f}(\mathrm{d})=\mathrm{a}$. Then f is contra $s \alpha r p s$-continuous, but not $s \alpha r p s$ continuous. Thus the above discussions lead to the following diagram. In this diagram, " $\mathrm{A} \rightarrow \mathrm{B}$ " means A implies B but not conversely and "A $\longleftrightarrow \mathrm{B}$ " means A and B are independent of each other.

Definition 3.20

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called contra sorps irresolute if $\mathrm{f}^{-1}(\mathrm{~V})$ is $s \alpha r p s$ - closed in (X, τ) for every sorps -open subset V of (Y, σ). The concepts of sorps-irresolute and contra sorps-irresolute are independent of each other as shown in the Examples 3.21 and 3.22.

Example 3.21

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{\phi,\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{a}$, $\mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Then f is contra $s \alpha r p s$-irresolute, but not $s \alpha r p s$-irresolute.

Example 3.22

Let $X=Y=\{a, b, c\}$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$ on X and Y respectively. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $f(a)=b, f(b)=c, f(c)=a$. Then f is $s \alpha r p s$-irresolute, but not contra $s \alpha r p s$-irresolute.

Theorem 3.23

Every contra sorps-irresolute function is contra sorps-continuous.

Proof

Suppose $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is contra $s \alpha r p s$-irresolute. Let V be any open subset of (Y, σ). Since every open set is semi-open and by using Proposition 3.2 of [28], V is $s \alpha r p s$-open in (Y, σ). Since f is contra $s \alpha r p s$-irresolute, $\mathrm{f}^{-1}(\mathrm{~V})$ is $\operatorname{s\alpha rps}$-closed in (X, τ). Hence f is contra sarps-continuous. Converse of
the above theorem need not be true as seen in the following example.

Example 3.24

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{\phi,\{a\},\{a, c\}, X\}$ and $\sigma=\{\phi,\{c\},\{b, c\}, Y\}$ on X and Y respectively. Let the function f : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined as $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})$ $=\mathrm{c}$. Then f is contra sarps-continuous, but not contra sorps-irresolute.

Theorem 3.25

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \mu)$ be two functions. Let $\mathrm{h}=\mathrm{g} \circ \mathrm{f}$. Then
(i) h is contra sorps-continuous if f is contra $s \alpha r p s$-continuous and g is continuous.
(ii) h is contra $s \alpha r p s$-continuous if f is sarpsirresolute and g is contra-continuous.
(iii) h is contra $s \alpha r p s$-continuous if f is $s \alpha r p s$ irresolute and g is contra $s \alpha r p s$-continuous.
(iv) h is sarps-continuous and contra sarpscontinuous if f is contra $s \alpha r p s$-continuous and g is perfectly-continuous.
(v) h is sorps-continuous if f is contra sorpscontinuous and g is contra-continuous.

Proof

(i) Let V be open in (Z, μ). Since g is continuous, g ${ }^{1}(\mathrm{~V})$ is open in (Y, σ). Since f is contra sorps continuous, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)$ is $s \alpha r p s$-closed in (X, τ). That is, $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is $s \alpha r p s-$ closed in (X, τ). This proves (i).
(ii) Let V be open in (Z, μ). Since g is contracontinuous, $\mathrm{g}^{-1}(\mathrm{~V})$ is closed in (Y, σ). By Lemma $2.8, \mathrm{~g}^{-1}(\mathrm{~V})$ is $s \alpha r p s$-closed in (Y, σ). Since f is $s \alpha r p s$-irresolute, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)$ is $s \alpha r p s$-closed in (X, τ). That is, $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is sorps-closed in (X, τ). This proves (ii).
(iii) Let V be open in (Z, μ). Since g is contra $s \alpha r p s$-continuous, $\mathrm{g}^{-1}(\mathrm{~V})$ is $s \alpha r p s$-closed in (Y, σ). Since f is sorps-irresolute, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)$ is $s \alpha r p s-c l o s e d ~ i n ~(\mathrm{X}, \tau)$. That is, $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is $s \alpha r p s$-closed in (X, τ). This proves (iii).
(iv) Let V be closed in (Z, μ). Since g is perfectlycontinuous, $\mathrm{g}^{-1}(\mathrm{~V})$ is clopen in (Y, σ). Since f is contra sorps-continuous, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)$ is both sarps -closed and sorps-open in (X, τ). That is, $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is both $s \alpha r p s$-closed and $s \alpha r p s$-open in (X, τ). This proves (iv).
(v) Let V be closed in (Z, μ). Since g is contracontinuous, $\mathrm{g}^{-1}(\mathrm{~V})$ is open in (Y, σ). Since f is contra $s \alpha r p s$-continuous, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)$ is sorps-closed in (X, τ). That is, $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is $\quad s \alpha r p s$-closed in (X, τ). This proves (v).

Theorem 3.26

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be surjective, $s \alpha r p s$-irresolute and $s \alpha r p s$-open and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \mu)$ be any function. Let every $s \alpha r p s$-open set in (X, τ) be open. Then $\mathrm{g} \circ \mathrm{f}$ is contra $s \alpha r p s$-continuous if and only if g is contra sorps-continuous.

Proof

Assume that $\mathrm{g} \circ \mathrm{f}$ is contra $s \alpha r p s$-continuous. Let V be closed in (Z, μ). Since $\mathrm{g} \circ \mathrm{f}$ is contra sarpscontinuous, $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is $s \alpha r p s$-open in (X, τ). By assumption, $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is open in (X, τ). That is $\mathrm{f}^{-1}\left(\mathrm{~g}{ }^{-}\right.$ $\left.{ }^{1}(\mathrm{~V})\right)$ is open in (X, τ). Since f is $s \alpha r p s$-open, $\mathrm{f}\left(\mathrm{f}^{-1}\left(\mathrm{~g}^{-}\right.\right.$ $\left.{ }^{1}(\mathrm{~V})\right)$) is sarps-open in (Y, σ). That is $\mathrm{g}^{-1}(\mathrm{~V})$ is sarps-open in (Y, σ). Hence g is contra sorpscontinuous. The converse part follows from Theorem 3.25 (iii).

Theorem 3.27

The following are equivalent for a function f : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$.
(i) f is contra sorps -continuous.
(ii) The inverse image of each closed set in (Y, σ) is sarps -open in (X, τ).

Proof

(i) \Rightarrow (ii)

Suppose (i) holds. Let V be closed in (Y, σ). Then $\mathrm{Y} \backslash$ V is open in (Y, σ). By assumption, $\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{V})$ is sarps-closed in (X, $\tau)$. But $\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{V})=\mathrm{X} \backslash \mathrm{f}^{-1}(\mathrm{~V})$ which is $s \alpha r p s$-closed in (X, τ). Therefore $\mathrm{f}^{-1}(\mathrm{~V})$ is $s \alpha r p s$-open in (X, τ). This proves (i) \Rightarrow (ii).
(ii) \Rightarrow (i)

Let V be open in (Y, σ). Then $\mathrm{Y} \backslash \mathrm{V}$ is closed in (Y, σ). By assumption, $\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{V})$ is sorps-open in (X, τ). But $\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{V})=\mathrm{X} \backslash \mathrm{f}^{-1}(\mathrm{~V})$ which is $\operatorname{sorps}-$ open in (X, τ). Therefore $\mathrm{f}^{-1}(\mathrm{~V})$ is sorps-closed in (X, $\tau)$. This proves (ii) $\Rightarrow(\mathrm{i})$.

Definition 3.28

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called perfectly contra
$s \alpha r p s$-irresolute if $\mathrm{f}^{-1}(\mathrm{~V})$ is both $s \alpha r p s$ closed and sorps-open in (X, τ) for every sorps open subset V of (Y, σ).

Theorem 3.29

A function f is perfectly contra $s \alpha r p s$-irresolute if and only if f is contra $s \alpha r p s$-irresolute and $s \alpha r p s$ irresolute.

Proof

Suppose f is perfectly contra $s \alpha r p s$-irresolute. Let V be $s \alpha r p s$-open in Y. Since f is perfectly contra $s \alpha r p s$-irresolute, $\mathrm{f}^{-1}(\mathrm{~V})$ is both $s \alpha r p s$-closed and sarps-open in (X, τ). Hence f is contra sorpsirresolute and sorps-irresolute.
Conversely, suppose f is contra $s \alpha r p s$-irresolute and sorps-irresolute. Let V be $s \alpha r p s$-open in (Y, σ). Since f is contra sarps-irresolute and $s \alpha r p s$-irresolute, $\mathrm{f}^{-1}(\mathrm{~V})$ is both $s \alpha r p s$-closed and $s \alpha r p s$-open in (X, τ). Hence f is perfectly contra sarps-irresolute.

Definition 3.30

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called almost contra $s \alpha r p s$-continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is sarps-closed in (X, τ) for every regular open subset V of (Y, σ).

Theorem 3.31

Every contra sorps-continuous function is almost contra sorps-continuous.

Proof

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function. Suppose f is contra sorps-continuous. Let V be a regular open subset of (Y, σ). Since every regular open set is open, V is open in (Y, σ). Since f is contra $s \alpha r p s$ continuous, $\mathrm{f}^{-1}(\mathrm{~V})$ is $s \alpha r p s$-closed in (X, τ). Hence f is almost $s \alpha r p s$-continuous.

Conclusion

In this paper, we introduced and investigated the notion of contra sorps-continuous functions by utilizing sorps-closed sets. We obtained fundamental properties of contra sorps-continuous functions and discussed the relationships between contra sorps -continuity and other related functions.

References

[1] Ahmad-Al-Omari, Mohd. Salmi Md Noorani, Bulletin of Mathematical Sci. Society, 32, (2009), 19.
[2] M. Akdag, A. Ozkan, J. New Results in Sci., 1, (2012), 40.
[3] K. Alli, Int. J. Mathematics Trends and Technology, 4 (11) (2013).
[4] A. K. Al-Obiadi, J. Pure and Appl. Sci., 24 (3) (2011).
[5] S.P. Arya, T.M. Nour, Indian J. Pure. Appl. Math., 21 (8), (1990), 717.
[6] M. Caldas, S. Jafari, T. Noiri, M. Simoes, Chaos Solitons Fractals, 32, (2007), 1597.
[7] M. Caldas, S. Jafari, K. Viswanathan S. Krishnaprakash, Kochi J. Math., 5, (2010), 67.
[8] J. Dontchev, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16, (1995), 35.
[9] J. Dontchev, Int. Math. Sci., 19 (2), (1996), 303.
[10] J. Dontchev, T. Noiri, 10 (2), (1999), 159.
[11] J. Dontchev, T. Noiri, Acta Math. Hungar., 89 (3), (2000), 211.
[12] E. Ekici, Chaos Solitons and Fractals, 35, (2008), 71.
[13] Y. Gnanambal, Indian J. Pure Appl. Math., 28 (3), (1997), 351.
[14] K. Indirani, P. Sathishmohan, V. Rajendran, Asian J. Computer Science Information Technology, 4(4), (2014), 39.
[15] S. Jafari, T. Noiri, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., 42, (1999), 27.
[16] S. Jafari, T, Noiri, Iran. Int. J. Sci., 2 (2), (2001), 153.
[17] C. Janaki, Studies on $\pi g \alpha$-closed sets in topology, Ph.D Thesis, Bharathiar University, Coimbatore, India, (1999).
[18] D.S. Jankovic, Anna. De. La. Soc. Sci. De Bruxelles, 97 (2), (1983), 59.
[19] N. Levine, Amer. Math. Monthly, 70, (1963), 36.
[20] N. Levine, Rend. Circ. Mat. Palermo, 19 (2), (1970), 89.
[21] H, Maki, R. Devi, K. Balachandran, Mem. Fac. sci. Kochi. Univ. Ser. A. Math., 15, (1994), 51.
[22] H, Maki, J. Umehara, T. Noiri, Generalized preclosed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 17, (1996), 33.
[23] K. Mariappa, S. Sekar, Int. J. Math. Analysis, 7 (13), (2013), 613.
[24] O. Njastad, Pacific J. Math., 15, (1965), 961.
[25] T. Noiri, J. Korean Math. Soc., 16, (1980), 161.
[26] N. Palaniappan, K.C. Rao, Kyungpook Math. J., 33 (2), (1993), 211.
[27] J.H. Park, Indian J. Pure. Appl. Math., (2004).
[28] T. Shyla Isac Mary, A. Subitha, Advances in Applied Mat. Analysis, 1, (2015), 19.
[29] T. Shyla Isac Mary, A. Subitha, Asian J. Mat. Computer Research, 10 (3), (2016), 223.
[30] G. Sindhu, K. Indirani, Int. J. Math. Archive, 4 (12), (2013), 87.
[31] M.K. Singal, A.R. Singal, Yokohama. Math. J., 16 (1968), 63.
[32] D. Sreeja, C. Janaki, Int. J. Statistika and Mathematika, 1 (2), (2011), 46.
[33] A. Subitha, T. Shyla Isac Mary, Int. J. Math. Archive, 6(2), (2015), 1.
[34] S. Syed Ali Fathima, M. Mariasingam, On Contra \#Rg-continuous Functions, 3(2), (2013), 939.
[35] A. Vadivel, K. Vairamanickam, Int. J. Math. Analysis, 3(37), (2009), 1803.
[36] M.K.R.S. Veerakumar, Acta Ciencia India, 1, (2002), 51.
[37] M.K.R.S. Veerakumar, Antarctica J. Math., 3 (1), (2006), 43.
[38] V. Zaitsav, , Dokl. Akad. Nauk SSSR, 178, (1968), 778.

[^0]: *Corresponding author,
 E-mail : subithaaus@gmail.com

