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Abstract

In 1970, Levine introduced generalized closed sets in topological spaces in AERTES

order to extend many of the important properties of closed sets to a large )
family. In the recent past, there has been considerable interest in the study of Contra  Sarps -continuous
various forms of generalized closed sets. The authors introduced Sarps-

. . . . ) Contra safrps -irresolute
closed sets in topological spaces. In this, we introduce a new class of function

called contra Sarps-continuous functions by using Sarps-closed sets and Perfectly contra Sarps-
characterize their basic properties. Further the relationship between this new irresolute

class with other classes of existing contra continuous functions are

established. Also we define contra Sarps-irresolute, perfectly contra Almost contra  Sarps-
Sarps-irresolute and almost contra Safps-continuous functions and we continuous

have given the relationship of these three functions with contra Sofps-
continuous functions.

1. Introduction 2. Preliminaries

In 1968, M. K. Singal and A. R. Singal [1] introduced almost Throughout this paper X and Y represent

continuous mappings. In 1986, T. Noiri introduced the concept the topological spaces on which no
of perfectly continuous. In 1996, J.Dontchev [2] introduced the separation axioms are assumed unless
notion of contra continuity. In 1999, J. Dontchev and T. Noiri [3] otherwise mentioned. For a subset A of a
introduced new class of functions, called contra semi-continuous topological space X, clA and intA denote
functions. The authors introduced Scaps-closed sets in  the closure of A and the interior of A
topological spaces. The purpose of this paper is to introduce a respectively. X ~\ A denotes the

complement of A in X. We recall the

new class of functions, namely contra Sarps-continuous ; L
y P following definitions and results.

functions in topological spaces.

Definition 2.1: A subset A of a space X is
called

(i) semi-open [19] if A < cl intA and semi-
closed if intclA < A.

(if) a -open [24] if A < intcl intA and & -
Published by GM SOFTWARE closed if cl int clA < A.
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(iii) 7z -open [4] if A is the union of regular open sets
and 7 -closed if A is the intersection of regular closed
sets.

The semi-closure (resp. pre-closure, resp. semi-pre-
closure, resp. « -closure, resp. b-closure) of a subset
A of X is the intersection of all semi-closed (resp. pre-
closed, resp. semi-pre-closed, resp. o -closed, resp.
b-closed) sets containing A and is denoted by sclA
(resp. pclA, resp. spclA, resp. aclA, resp. bclA).

Definition 2.2: A subset A of a space X is called

g-closed [20] (resp. rg-closed [26], resp. «g -closed
[21], resp. gs-closed [5], resp. gp-closed [22], resp.
gpr-closed [13], resp. gsp-closed [8], resp. zg -closed
[11], resp. 7gp -closed [27], resp. 7 -closed [17],
resp. zgb -closed [4], resp. rwg-closed [35], resp. gb-
closed [1], resp. g'p-closed [36], resp. rgb-closed
[23], resp. *g-closed [37]) if clA < U (resp. clA <
U, resp. aclA < U, resp. sclA < U, resp. pclA <
U, resp. pclAc U, resp. spclA < U, resp. clA < U,
resp. pclA < U, resp. aclA < U, resp. bclA < U,
resp. clintA < U, resp. bclA < U, resp. pclA <
U, resp. bclA < U, resp. clA < U) whenever A <
U and U is open (resp. regular open, resp. open, resp.
open, resp. open, resp. regular open, resp. open,
resp. 7z -Open, resp. sz -open, resp. 7 -open, resp. 7 -
open, resp. regular open, resp. open, resp. g-open,

resp. regular open, resp. é -open.).

Definition 2.3 [33]

A subset A of a space X is called semi « -regular pre-
semi closed (briefly sarps-closed) if

sclA < U whenever A < Uand U is arps-open.
The complements of the above mentioned closed sets
are their respective open sets. For example, a subset B
of a space X is generalized open (briefly g-open) if
X\ B is g-closed.

Definition 2.4

(i) A function f: (X,7)—>(Y,o0) is called [6]
if f (V) is closed in (X, 7) for every closed subset V
of (Y,o).

(ii) A function f: (X,7)— (Y, o) is called perfectly-
continuous [25] if f (V) is clopen in (X, 7 ) for every
closed subset V of (Y, o).

(iii) A function f: (X,7)—(Y, o) is called regular set
connected [14] if f (V) is clopen in (X, 7) for every
regular closed subset V of (Y, o).

(iv) almost continuous[31] if f (V) is closed in (X, 7)
for every regular closed subset V of (Y, o).

Definition 2.5[29]
(i) A function f: (X,7)—(Y,o) is called Sarps-

continuous if f (V) is sarps-closed in (X,7) for
every closed subset V of (Y, o).

(i) A function f: (X,7)—>(Y,o0) is called sarps-
irresolute if f (V) is sarps-closed in (X, ) for every
Sarps -closed subset V of (Y, o).

(iii) A function f: (X,7)—>(Y,o) is called almost
sarps-continuous if f (V) is sarps-closed in (X,7)
for every regular closed subset V of (Y, o).

Definition 2.6

A function f: (X,7)—(Y,o) is called Sarps-closed
(resp. sarps-open) if for every closed (resp. open) set
U of (X, 7), the set f(U) is sarps-closed (resp.Sarps -
open) in (Y, o).

Definition 2.7

A function . (X,z)—>(Y,o) is called contra
continuous [9] (resp. contra semi-continuous [10], resp.
contra s -continuous [12], resp. contra « -continuous
[16], resp. contra g-continuous [6], resp. contra rg-
continuous [34], resp. contra «ag -continuous [3], resp.

contra gs-continuous [14], resp. contra gp-continuous
[7], resp. contra gpr-continuous [14], resp. contra gsp-
continuous [3], resp. contra 7g -continuous [12], resp.

contra  7zgp -continuous [7], resp. contra zgb -

continuous [32], resp. contra rwg-continuous [34], resp.
contra gb-continuous [2], resp. contra g p-continuous
[3], resp. contra zgc -continuous [17], resp. contra *g-

continuous [34], resp. contra rgh-continuous [30]) if f~
Y(V) is closed (resp. semi-closed, resp. i -closed,
resp. o -closed, resp. g-closed, resp. rg-closed, resp.
ag -closed, resp. gs-closed, resp. gp-closed, resp. gpr-
closed, resp. gsp-closed, resp. zg -closed, resp. 7gp -
closed, resp. ngb -closed, resp. rwg-closed, resp. gb-
closed, resp. g'p-closed, resp. ngo -closed, resp. *g-
closed, resp. rgb-closed) in (X,z) for every open
subset V of (Y, o).

Lemma 2.8

Every closed set is sarps-closed.

Definition 2.9 [18]

A space X is called locally indiscrete if every open
subset of X is closed.

Contra SaRPS -continuous functions
Definition 3.1

A function f: (X,7)—(Y, o) is called contra Sarps-
continuous if f *(V) is sarps- closed in (X,7) for
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every open subset V of (Y, o).
Proposition 3.2

If A function f: (X,7)—(Y,o) from a topological
space X into a topological space Y is contra-continuous,
then it is contra Sarps -continuous.

Proof

Assume that the function f: (X,z)— (Y, o) is contra-
continuous. Let V be an open subset of (Y, o). Since f
is contra-continuous, f *(V) is closed in (X,7). By
Lemma 2.8, f (V) is sarps-closed in (X, 7). Hence f
is contra Sairps -continuous.

Converse of the above Proposition need not be true as
shown in the following example.

Example 3.3

Let X = {a,b,c} with topology 7 ={¢ ,{a}.{b,c}, X} and
Y = {p.g} with topology o -{¢.{p}. Y} Let £
(X,7)—(Y, o) be defined as f(a) = f(c) = g, f(b) = p.
Then f is contra Sarps-continuous, but not contra-
continuous.

Proposition 3.4

Letf: (X,7)—(Y, o) be a function. Then

(i) if f is contra semi-continuous, then f is contra
Sarps -continuous.
(ii) if f is contra
continuous.

(iii) if f is contra
continuous.

-continuous, then f is contra -

-continuous, then f is contra -

Proof

Suppose f is contra semi-continuous (resp. contra 7 -
continuous, resp. contra ¢ -continuous). Let V be an
open subset of (Y, o). Since f is contra semi-continuous
(resp. contra & -continuous, resp. contra @« -
continuous), f (V) is semi-closed (resp. 7 -closed,
resp. « -closed) in (X,7). Using Proposition 3.2 of
[33], f (V) is sarps-closed in (X, 7). Then by using
Definition 3.1, f is contra sarps-continuous. This
proves (i), (ii) and (iii).

The reverse implications need not be true as shown in
the Example 3.5.

Example 3.5

Let X = Y={a,b,c} with topologies 7 ={¢ ,{a},{b,c} X}
and o ={¢ .{a},Y} on X and Y respectively. Let the
function f: (X,7)— (Y, o) be defined as f(a) = c, f(b) =
a, f(c)=h.

Then f is contra Sarps-continuous, but not contra

semi-continuous, not contra s -continuous, not contra
o -continuous.

Proposition 3.6

Letf: (X,7)— (Y, o) be a function. Then
(i) if f is contra sarps -continuous, then f is contra gs-

continuous.
(i) if f is contra Sarps-continuous, then f is contra

rgb-continuous.
(iti) if f is contra Sarps-continuous, then f is contra

7gb -continuous.
(iv) if f is contra Sarps-continuous, then f is contra

gb-continuous.
(v) if fis contra Ssarps-continuous, then f is contra

gsp-continuous.

Proof

Suppose f is contra Sarps-continuous. Let V be an
open subset of (Y,o ). Since f is contra Sarps -
continuous, f (V) is sarps-closed in (X, 7). Then by
using Proposition 3.4 of [33], f (V) is gs-closed
(resp. rgb -closed, resp. agb-closed) in (X,7).
Therefore f is contra gs-continuous (resp. contra rgh-
continuous, resp. contra zgb -continuous). This proves
(i), (ii) and (iii). Since gs-closed = gb-closed = gsp-
closed, the proof for (iv) and (v) follows from (i).

The reverse implications need not be true as shown in
the Example 3.7.

Example 3.7
Let X = Y = {abcd} with topologies
 ={¢ {a}.{b}.{a,b}{b,c}{a,b,c} X} and

o ={¢ {ac},Y}on Xand respectively.

Let the function f: (X,7)—>(Y,c) be defined as
f(a) = b, f(b) = a, f(c) = b, f(d) = c. Then f is contra gs-
continuous, contra rgh-continuous, contra zgb -

continuous, contra gb-continuous, contra  gsp-
continuous, but not contra Sarps -continuous.

The concept contra Sarps-continuous is independent
from the concepts contra ag -continuous, contra 7zg -
continuous, contra gp-continuous, contra  zgp -
continuous, contra aga -continuous, contra  g'p-

continuous, contra rg-continuous, contra g-continuous,
contra gpr-continuous, contra rwg-continuous, contra
*g-continuous as shown in the following examples.

Example 3.8

From Example 3.7, f *({ac}) = {bd} is ag-
closed, 7g -closed, gp-closed, #gp -closed, nQc -
closed, g'p-closed in (X,7). Hence f is contra ag -
continuous, contra 7zg -continuous, contra ap-
continuous, contra zgp -continuous, contra g« -
continuous, contra g p-continuous, but not contra
Sarps-continuous.
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Example 3.9 Example 3.15
Let X = Y = {abcd} with topologies _ _ . .

~ Let X = Y = {abecd} with topologies
A A AR R e M T =g e b} fab}habch.X} and

o={¢ {b},Y} on X and Y respectively. Let the
function f: (X,7)— (Y, o) be defined as f(a) = b, f(b)
= a, f(c) = b, f(d) = c. Then f is contra Sarps-
continuous, but not contra g -continuous, not contra
719 -continuous, not contra gp-continuous, not contra

7gp -continuous, not contra g p-continuous.

Example 3.10

Let X =Y = {a,b,c,d} with topologies

7 ={¢ {a}.{a,b}, X} and o ={¢ {d},Y}on Xand Y
respectively. Let the function f: (X,7)—(Y,o ) be
defined as f(a) = b, f(b) =d, f(c) = a, f(d) = c. Then fis
contra Sarps-continuous, but not contra g-continuous.

Example 3.11

Let X =Y = {a,b,c,d} with topologies

7 ={¢ {a}{ab}, X} and o {4 {b,c} Y}on Xand Y
respectively. Let the function f: (X,7)—(Y,o ) be
defined as f(a) = c, f(b) = d, f(c) = b, f(d) = a. Then fis
contra g-continuous, but not contra Sarps -continuous.

Example 3.12

Let X =Y = {a,b,c} with topologies
v ={¢ {a}.{b}.{ab}. X} and o ={¢ {c}.Y}

on X and Y respectively. Let the function f:
(X,7)—>(Y, o) be defined as f(a) = c, f(b) = a, f(c) =
b. Then f is contra Sarps-continuous, but not contra

gpr-continuous.

Example 3.13

Let X = Y = {abc} with

gpr-continuous, but not contra Sarps -continuous.

Example 3.14

Let X = Y = {abcd} with

contra rwg-continuous and contra *g-continuous.

topologies
7 ={¢ {a},{b}{a,b}, X} and o ={¢ {b,c} Y} on X
and Y respectively. Let the function f: (X,7)—(Y,0)
be defined as f(a) = b, f(b) = c, f(c) = a. Then f is contra

topologies

r={¢ .{a}, {b} {ab}{ab,c}X}and o ={¢ {c}Y}on
X and Y respectively. Let the function f:
(X,7)—>(Y,o) be defined as f(a) = b, f(b) = c, f(c) =
d, f(d) = a. Then f is contra Sarps -continuous, but not

o ={¢ .{c,d},Y} on X and Y respectively. Let the
function f: (X,7)—(Y,o) be defined as f(a) = c,
f(b) = d, f(c) = a, f(d) = c. Then f is contra rwg-
continuous and contra *g-continuous, but not contra
Sarps -continuous.

Example 3.16
Let X = Y = {abc} with topologies
7 ={¢ {a},{b}.{a,b}.{a,b,c} {ab,d} X} and

o ={¢ {b,c,d}, Y} on X and Y respectively. Let the
function f: (X,7)—(Y, o) be defined as f(a) = b,
f(b) = ¢, f(c) = d, f(d) = a. Then f is contra rg-
continuous, but not contra Sarps -continuous.

Example 3.17
Let X = Y = {ab,cd} with topologies
7 ={¢ {a},{b}.{a,b},{a,b,c},{a,b,d} X} and

o ={¢ {d},Y} on X and Y respectively. Let the
function f: (X,7)— (Y, o) be defined as f(@) =
d, f(b) =c, f(c) = b, f(d) = a. Then f is contra Sarps -
continuous, but not contra rg-continuous.

The concept of Sarps-continuity and contra
Sarps -continuity are independent of each other as
shown in the Examples 3.18 and 3.19.

Example 3.18
Let X = Y = {ab,cd} with topologies
 ={¢ {a}.{b}.{a,b}{b,c}{ab,c} X} and

o ={¢ .{ac,d}, Y} on X and Y respectively. Let the
function f: (X,7)—(Y, o) be defined as f(a) = b,

f(b) = a, f(c) = b, f(d) = c. Then f is Sarps-
continuous, but not contra Sarps -continuous.
Example 3.19

Let X = Y = {ab,cd} with topologies

7 ={¢ {a}.{a,b}, X} and o -{¢ ,{a,d},Y} on X and
Y respectively. Let the function f: (X,7)—>(Y,0)
be defined as f(a) = c, f(b) = d, f(c) = b, f(d) = a.
Then f is contra Sarps -continuous, but not Sarps -
continuous. Thus the above discussions lead to the
following diagram. In this diagram, “A — B” means

A implies B but not conversely and “A >~
means A and B are independent of each other.
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contra-continuous «— contra 7 -continuous

l contra rwg-continuous
contra & -continuous contrag'p-continuous [  contra *g-continuous
l contra gpr-continuous

1

contra semi-continuous

//

contra ag -continuous

contra sorps -

continuous

contra mgh -continuous contra g-continuous

contra gs-continuous contra rg-continuou:

confra gb-continuous contra 7g -continuous

[ contra zgp -c&rﬁnnou

contra gsp-continuous contra g -continuous

Definition 3.20

A function . (X,7)—(Y,o) is called contra Sarps-
irresolute if f (V) is sarps- closed in (X, 7 ) for every
Sarps-open subset V of (Y,o). The concepts of
sarps-irresolute and contra Sarps-irresolute are

independent of each other as shown in the Examples
3.21 and 3.22.

Example 3.21

Let X =Y = {ab,c} with topologies 7 ={¢ ,{b,c}, X}
and o ={¢ {a}.{a,c},Y} on X and Y respectively. Let
the function f: (X,7)— (Y, o) be defined as f(a) = a,
f(b) = b, f(c) = c. Then f is contra Sarps -irresolute, but
not Sarps-irresolute.

Example 3.22

Let X = Y = {abc} with topologies
7 ={¢ {a},{b}{a,b} X} and o ={¢ {b,c} Y} on X
and Y respectively. Let the function f: (X,7)—(Y,0)
be defined as f(a) = b, f(b) = ¢, f(c) = a. Then f is
Sarps-irresolute, but not contra Sarps -irresolute.

Theorem 3.23

Every contra Sarps-irresolute function is contra
Sarps -continuous.

Proof

Suppose f: (X,7)— (Y, o) is contra Sarps -irresolute.
Let V be any open subset of (Y, ). Since every open
set is semi-open and by using Proposition 3.2 of
[28], V is Sarps-open in (Y,o ). Since f is contra
sarps-irresolute, f *(V) is sarps-closed in (X, 7).
Hence f is contra Sarps-continuous. Converse of

the above theorem need not be true as seen in the
following example.

Example 3.24

Let X = Y = {abc} with topologies

7 ={¢ {a}, {a c}, X} and o ={¢ {c}.{b,c},Y} on X
and Y respectively. Let the function f:
(X,7)— (Y, o) be defined as f(a) = a, f(b) = b, f(c)
= ¢. Then f is contra Sarps-continuous, but not
contra Sarps -irresolute.

Theorem 3.25

Let f: (X,7)—>(Y,o) and g: (Y,0) =>(Z, ) be
two functions. Leth =gof. Then

(i) h is contra Sarps-continuous if f s
contra Sarps -continuous and g is continuous.

(if) h is contra Sarps-continuous if f is Sarps-
irresolute and g is contra-continuous.

(iif) h is contra Sarps-continuous if f is sarps-
irresolute and g is contra Sarps -continuous.

(iv) h is sarps-continuous and contra Sarps-
continuous if f is contraSarps -continuous and g is

perfectly-continuous.
(V) h is Sarps-continuous if f is contraSarps-

continuous and g is contra-continuous.
Proof

(i) Let VV be open in (Z, & ). Since g is continuous, g -
Y(V) is open in (Y,o). Since f is contra Sarps-
continuous, f (g *(V)) is sarps-closed in (X,7).
That is, (gof) (V) is sarps-closed in (X, 7). This
proves (i).

(if) Let V be open in (Z, u). Since g is contra-
continuous, g (V) is closed in (Y,o). By Lemma
2.8, g }(V) is sarps-closed in (Y,o). Since f is
sarps-irresolute, f (g (V)) is sarps-closed in
(X,7). That is, (gof) (V) is sarps-closed in
(X, 7). This proves (ii).

(iii) Let V be open in (Z, ). Since g is contra
sarps-continuous, g (V) is Sarps-closed in
(Y,o). Since f is sarps-irresolute, f (g *(V)) is
sarps-closed in (X,7). That is, (gof) (V) is
sarps-closed in (X, 7). This proves (iii).

(iv) Let V be closed in (Z, u2). Since g is perfectly-
continuous, g (V) is clopen in (Y,o). Since f is
contra sarps-continuous, f (g *(V)) is both
sarps-closed and Sarps-open in (X,7). That is,
(gof) (V) is both sarps-closed and Sarps-open
in (X, 7). This proves (iv).
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(v) Let V be closed in (Z, ). Since g is contra-
continuous, g (V) is open in (Y, o). Since f is contra
sarps-continuous, f (g *(V)) is sarps-closed in
(X,7). That is, (gof) (V) is sarps-closed in
(X, 7). This proves (V).

Theorem 3.26

Let f: (X,7)—(Y,o ) be surjective, sarps-irresolute
and Ssarps-open and g: (Y,o) —(Z, ) be any
function. Let every Sarps-open set in (X, 7 ) be open.
Then gof is contra Sarps-continuous if and only if g
is contra Sarps -continuous.

Proof

Assume that go f is contra Sarps -continuous. Let V be
closed in (Z,u). Since gof is contra Sarps-
continuous, (gof) (V) is Sarps-open in (X,7). By
assumption, (go ) *(V) is open in (X, 7). Thatis f (g~
Y(V)) is open in (X, 7). Since f is Sarps-open, f(f (g
Y(V))) is sarps-open in (Y,o). That is g (V) is
Sarps-open in (Y,o ). Hence g is contra Sarps-
continuous. The converse part follows from Theorem
3.25(iii).

Theorem 3.27

The following are equivalent for a function f:
X, 7)—=>(Y,0).
(i) fis contra Sarps -continuous.

(ii) The inverse image of each closed set in (Y,o) is
Sarps-open in (X, 7).

Proof

(i) = (i)

Suppose (i) holds. Let V be closed in (Y,o ). Then Y \
V is open in (Y,o). By assumption, f (Y \ V) is
sarps-closed in (X,7). But f (Y \ V) = X \ f (V)
which is sarps-closed in (X, 7). Therefore f (V) is
Sarps-open in (X, 7). This proves (i) = (ii).

(i) =)

Let V be open in (Y,o). Then Y \ V is closed in
(Y,o ). By assumption, f *(Y \ V) is sarps-open in
(X,7). But f (Y \ V) = X \ f (V) which is sarps-
open in (X, 7). Therefore f (V) is sarps-closed in
(X, 7). This proves (ii) = (i).

Definition 3.28

A function f: (X,7)—(Y, o) is called perfectly contra

sarps-irresolute if f (V) is both sarps -
closed and sarps-open in (X,7) for every Sarps-
open subset V of (Y, o).

Theorem 3.29

A function f is perfectly contra sarps-irresolute if
and only if f is contra Sarps -irresolute and Sarps -
irresolute.

Proof

Suppose f is perfectly contra Sarps-irresolute. Let
V be Sarps-open in Y. Since f is perfectly contra
sarps-irresolute, f (V) is both sarps-closed and
Sarps-open in (X,7). Hence f is contra Sarps-
irresolute and Sarps -irresolute.

Conversely, suppose f is contra Sarps-irresolute
and Sarps-irresolute. Let V be Sarps-open in
(Y,o). Since f is contra Sarps-irresolute and
sarps-irresolute, f (V) is both sarps-closed and
sarps-open in (X,7). Hence f is perfectly contra
Sarps -irresolute.

Definition 3.30

A function f: (X,7)—(Y, o) is called almost contra
sarps-continuous if f (V) is sarps-closed in
(X, ) for every regular open subset V of (Y, o).

Theorem 3.31

Every contra sarps-continuous function is almost
contra Sarps -continuous.

Proof

Let f: (X,7)—(Y,o) be a function. Suppose f is
contra Sarps-continuous. Let V be a regular open
subset of (Y,o ). Since every regular open set is
open, V is open in (Y, o). Since f is contra Safps-
continuous, f (V) is Sarps-closed in (X, 7). Hence
f is almost Sarps -continuous.

Conclusion

In this paper, we introduced and investigated the
notion of contra Sofps-continuous functions by

utilizing  Sarps-closed sets. We obtained
fundamental properties of contra Sarps -continuous

functions and discussed the relationships between
contra Sarps -continuity and other related functions.
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