

INDIAN JOURNAL OF RESEARCH FOUNDATION

www.indianjournal.net

RESEARCH ARTICLE

On contra sarps-continuous functions in topological spaces

T. Shyla Isac Mary, A. Subitha*

Department of Mathematics, Nesamony Memorial Christian College, Marthandam-629 165, Tamil Nadu, India

Received 10 February, 2016; Accepted 25 March 2016 Available online 25 March 2016

Abstract

In 1970, Levine introduced generalized closed sets in topological spaces in order to extend many of the important properties of closed sets to a large family. In the recent past, there has been considerable interest in the study of various forms of generalized closed sets. The authors introduced $s \alpha rps$ -closed sets in topological spaces. In this, we introduce a new class of function called contra $s \alpha rps$ -continuous functions by using $s \alpha rps$ -closed sets and characterize their basic properties. Further the relationship between this new class with other classes of existing contra continuous functions are established. Also we define contra $s \alpha rps$ -irresolute, perfectly contra $s \alpha rps$ -irresolute and almost contra $s \alpha rps$ -continuous functions and we have given the relationship of these three functions with contra $s \alpha rps$ -continuous functions.

Keywords

Contra sarps-continuous

Contra sarps-irresolute

Perfectly contra sarps-irresolute

Almost contra sarps-continuous

1. Introduction

In 1968, M. K. Singal and A. R. Singal [1] introduced almost continuous mappings. In 1986, T. Noiri introduced the concept of perfectly continuous. In 1996, J.Dontchev [2] introduced the notion of contra continuity. In 1999, J. Dontchev and T. Noiri [3] introduced new class of functions, called contra semi-continuous functions. The authors introduced sarps-closed sets in topological spaces. The purpose of this paper is to introduce a new class of functions, namely contra sarps-continuous functions in topological spaces.

*Corresponding author,

E-mail: subithaaus@gmail.com

Published by GM SOFTWARE

2. Preliminaries

Throughout this paper X and Y represent the topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a topological space X, clA and intA denote the closure of A and the interior of A respectively. X \ A denotes the complement of A in X. We recall the following definitions and results.

Definition 2.1: A subset A of a space X is called

- (i) semi-open [19] if $A \subseteq cl$ int A and semi-closed if int $clA \subseteq A$.
- (ii) α -open [24] if $A \subseteq int \ cl \ int A$ and α -closed if $cl \ int \ cl A \subseteq A$.

(iii) π -open [4] if A is the union of regular open sets and π -closed if A is the intersection of regular closed sets.

The semi-closure (resp. pre-closure, resp. semi-pre-closure, resp. α -closure, resp. b-closure) of a subset A of X is the intersection of all semi-closed (resp. pre-closed, resp. semi-pre-closed, resp. α -closed, resp. b-closed) sets containing A and is denoted by sclA (resp. pclA, resp. spclA, resp. aclA, resp. bclA).

Definition 2.2: A subset A of a space X is called g-closed [20] (resp. rg-closed [26], resp. αg -closed [21], resp. gs-closed [5], resp. gp-closed [22], resp. gpr-closed [13], resp. gsp-closed [8], resp. πg -closed [11], resp. πgp -closed [27], resp. $\pi g\alpha$ -closed [17], resp. πgb -closed [4], resp. rwg-closed [35], resp. gbclosed [1], resp. g*p-closed [36], resp. rgb-closed [23], resp. *g-closed [37]) if $clA \subseteq U$ (resp. $clA \subseteq$ U, resp. $\alpha clA \subset U$, resp. $sclA \subset U$, resp. $pclA \subset$ U, resp. $pclA \subseteq U$, resp. $spclA \subseteq U$, resp. $clA \subseteq U$, resp. $pclA \subseteq U$, resp. $\alpha clA \subseteq U$, resp. $bclA \subseteq U$, resp. cl $intA \subseteq U$, resp. $bclA \subseteq U$, resp. $pclA \subseteq$ U, resp. $bclA \subseteq U$, resp. $clA \subseteq U$) whenever $A \subseteq U$ U and U is open (resp. regular open, resp. open, resp. open, resp. open, resp. regular open, resp. open, resp. π -open, resp. π -open, resp. π -open, resp. π open, resp. regular open, resp. open, resp. g-open, resp. regular open, resp. \hat{g} -open.).

Definition 2.3 [33]

A subset A of a space X is called semi α -regular presemi closed (briefly $s \alpha r p s$ -closed) if

 $sclA \subseteq U$ whenever $A \subseteq U$ and U is αrps -open.

The complements of the above mentioned closed sets are their respective open sets. For example, a subset B of a space X is generalized open (briefly g-open) if $X \setminus B$ is g-closed.

Definition 2.4

- (i) A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called [6] if $f^{-1}(V)$ is closed in (X, τ) for every closed subset V of (Y, σ) .
- (ii) A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called perfectly-continuous [25] if f⁻¹(V) is clopen in (X, τ) for every closed subset V of (Y, σ) .
- (iii) A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called regular set connected [14] if $f^{-1}(V)$ is clopen in (X, τ) for every regular closed subset V of (Y, σ) .
- (iv) almost continuous[31] if $f^{-1}(V)$ is closed in (X, τ) for every regular closed subset V of (Y, σ) .

Definition 2.5[29]

(i) A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called sarps-

- continuous if $f^{-1}(V)$ is $s \alpha r p s$ -closed in (X, τ) for every closed subset V of (Y, σ) .
- (ii) A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called *sarps*-irresolute if f⁻¹(V) is *sarps*-closed in (X, τ) for every *sarps*-closed subset V of (Y, σ) .
- (iii) A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called almost $s \alpha rps$ -continuous if $f^{-1}(V)$ is $s \alpha rps$ -closed in (X, τ) for every regular closed subset V of (Y, σ) .

Definition 2.6

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called $s \alpha r p s$ -closed (resp. $s \alpha r p s$ -open) if for every closed (resp. open) set U of (X, τ) , the set f(U) is $s \alpha r p s$ -closed (resp. $s \alpha r p s$ -open) in (Y, σ) .

Definition 2.7

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called contra continuous [9] (resp. contra semi-continuous [10], resp. contra π -continuous [12], resp. contra α -continuous [16], resp. contra g-continuous [6], resp. contra rgcontinuous [34], resp. contra αg -continuous [3], resp. contra gs-continuous [14], resp. contra gp-continuous [7], resp. contra gpr-continuous [14], resp. contra gspcontinuous [3], resp. contra πg -continuous [12], resp. πgp -continuous [7], resp. contra πgb continuous [32], resp. contra rwg-continuous [34], resp. contra gb-continuous [2], resp. contra g*p-continuous [3], resp. contra $\pi g \alpha$ -continuous [17], resp. contra *gcontinuous [34], resp. contra rgb-continuous [30]) if f $^{1}(V)$ is closed (resp. semi-closed, resp. π -closed, resp. α -closed, resp. g-closed, resp. rg-closed, resp. αg -closed, resp. gs-closed, resp. gp-closed, resp. gprclosed, resp. gsp-closed, resp. πg -closed, resp. πgp closed, resp. πgb -closed, resp. rwg-closed, resp. gbclosed, resp. g^*p -closed, resp. $\pi g \alpha$ -closed, resp. *gclosed, resp. rgb-closed) in (X, τ) for every open subset V of (Y, σ) .

Lemma 2.8

Every closed set is $s \alpha r p s$ -closed.

Definition 2.9 [18]

A space X is called locally indiscrete if every open subset of X is closed.

Contra $S \alpha RPS$ -continuous functions

Definition 3.1

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called contra *sarps*-continuous if $f^{-1}(V)$ is *sarps*-closed in (X, τ) for

every open subset V of (Y, σ) .

Proposition 3.2

If A function $f: (X, \tau) \rightarrow (Y, \sigma)$ from a topological space X into a topological space Y is contra-continuous, then it is contra *sarps*-continuous.

Proof

Assume that the function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contracontinuous. Let V be an open subset of (Y, σ) . Since f is contra-continuous, $f^{-1}(V)$ is closed in (X, τ) . By Lemma 2.8, $f^{-1}(V)$ is $s \alpha r p s$ -closed in (X, τ) . Hence f is contra $s \alpha r p s$ -continuous.

Converse of the above Proposition need not be true as shown in the following example.

Example 3.3

Let $X = \{a,b,c\}$ with topology $\tau = \{\phi,\{a\},\{b,c\},X\}$ and $Y = \{p,q\}$ with topology $\sigma = \{\phi,\{p\},Y\}$. Let $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = f(c) = q, f(b) = p. Then f is contra *sarps*-continuous, but not contracontinuous.

Proposition 3.4

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then

- (i) if f is contra semi-continuous, then f is contra $s \alpha r p s$ -continuous.
- (ii) if f is contra -continuous, then f is contra continuous.
- (iii) if f is contra -continuous, then f is contra -continuous.

Proof

Suppose f is contra semi-continuous (resp. contra π -continuous, resp. contra α -continuous). Let V be an open subset of (Y,σ) . Since f is contra semi-continuous (resp. contra π -continuous, resp. contra α -continuous), f $^{-1}(V)$ is semi-closed (resp. π -closed, resp. α -closed) in (X,τ) . Using Proposition 3.2 of [33], f $^{-1}(V)$ is $s\alpha rps$ -closed in (X,τ) . Then by using Definition 3.1, f is contra $s\alpha rps$ -continuous. This proves (i), (ii) and (iii).

The reverse implications need not be true as shown in the Example 3.5.

Example 3.5

Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{\phi, \{a\}, \{b,c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$ on X and Y respectively. Let the function $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as f(a) = c, f(b) = a, f(c) = b.

Then f is contra slpha rps-continuous, but not contra semi-continuous, not contra π -continuous, not contra α -continuous.

Proposition 3.6

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then

- (i) if f is contra $s \alpha r p s$ -continuous, then f is contra gs-continuous.
- (ii) if f is contra *sarps*-continuous, then f is contra rgb-continuous.
- (iii) if f is contra $s \alpha r p s$ -continuous, then f is contra $\pi g b$ -continuous.
- (iv) if f is contra *sarps*-continuous, then f is contra gb-continuous.
- (v) if f is contra *scarps*-continuous, then f is contra gsp-continuous.

Proof

Suppose f is contra $s \alpha r p s$ -continuous. Let V be an open subset of (Y, σ) . Since f is contra $s \alpha r p s$ -continuous, $f^{-1}(V)$ is $s \alpha r p s$ -closed in (X, τ) . Then by using Proposition 3.4 of [33], $f^{-1}(V)$ is gs-closed (resp. rgb -closed, resp. $\pi g b$ -closed) in (X, τ) . Therefore f is contra gs-continuous (resp. contra rgb-continuous, resp. contra $\pi g b$ -continuous). This proves (i), (ii) and (iii). Since gs-closed \Rightarrow gb-closed \Rightarrow gsp-closed, the proof for (iv) and (v) follows from (i). The reverse implications need not be true as shown in the Example 3.7.

Example 3.7

Let $X = Y = \{a,b,c,d\}$ with topologies $\tau = \{\phi,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\},X\}$ and $\sigma = \{\phi,\{a,c\},Y\}$ on X and Y respectively.

Let the function $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as f(a) = b, f(b) = a, f(c) = b, f(d) = c. Then f is contra gs-continuous, contra rgb-continuous, contra πgb -continuous, contra gb-continuous, contra gsp-continuous, but not contra $s \alpha rps$ -continuous.

The concept contra $s \alpha r p s$ -continuous is independent from the concepts contra αg -continuous, contra πg -continuous, contra g p-continuous, contra g p-continuous as shown in the following examples.

Example 3.8

From Example 3.7, f $^{-1}(\{a,c\}) = \{b,d\}$ is αg -closed, πg -closed, gp-closed, $\pi g \rho$ -closed, $\pi g \alpha$ -closed, g*p-closed in (X,τ) . Hence f is contra αg -continuous, contra πg -continuous, contra gp-continuous, contra $\pi g \rho$ -continuous, but not contra $\pi g \rho$ -continuous.

Example 3.9

Let $X = Y = \{a,b,c,d\}$ with topologies $\tau = \{\phi,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\},X\}$ and $\sigma = \{\phi,\{b\},Y\}$ on X and Y respectively. Let the function $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = b, f(b) = a, f(c) = b, f(d) = c. Then f is contra $s \alpha r p s$ -continuous, but not contra αg -continuous, not contra $\pi g p$ -continuous, not contra g p-continuous, not contra g p-continuous.

Example 3.10

Let $X = Y = \{a,b,c,d\}$ with topologies $\tau = \{\phi,\{a\},\{a,b\},X\}$ and $\sigma = \{\phi,\{d\},Y\}$ on X and Y respectively. Let the function $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = b, f(b) = d, f(c) = a, f(d) = c. Then f is contra $s \alpha rps$ -continuous, but not contra g-continuous.

Example 3.11

Let $X = Y = \{a,b,c,d\}$ with topologies $\tau = \{\phi, \{a\}, \{a,b\}, X\}$ and $\sigma = \{\phi, \{b,c\}, Y\}$ on X and Y respectively. Let the function $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as f(a) = c, f(b) = d, f(c) = b, f(d) = a. Then f is contra g-continuous, but not contra $s \alpha rps$ -continuous.

Example 3.12

Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{\phi,\{a\},\{b\},\{a,b\},X\}$ and $\sigma = \{\phi,\{c\},Y\}$ on X and Y respectively. Let the function $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = c, f(b) = a, f(c) = b. Then f is contra $s \alpha r p s$ -continuous, but not contra gpr-continuous.

Example 3.13

Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{\phi,\{a\},\{b\},\{a,b\},X\}$ and $\sigma = \{\phi,\{b,c\},Y\}$ on X and Y respectively. Let the function $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = b, f(b) = c, f(c) = a. Then f is contra gpr-continuous, but not contra $s \alpha rps$ -continuous.

Example 3.14

Let $X = Y = \{a,b,c,d\}$ with topologies $\tau = \{\phi,\{a\},\{b\},\{a,b\},\{a,b,c\},X\}$ and $\sigma = \{\phi,\{c\},Y\}$ on X and Y respectively. Let the function $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = b, f(b) = c, f(c) = d, f(d) = a. Then f is contra $s \alpha r p s$ -continuous, but not contra rwg-continuous and contra *g-continuous.

Example 3.15

Let $X = Y = \{a,b,c,d\}$ with topologies $\tau = \{\phi,\{a\},\{b\},\{a,b\},\{a,b,c\},X\}$ and $\sigma = \{\phi,\{c,d\},Y\}$ on X and Y respectively. Let the function $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = c, f(b) = d, f(c) = a, f(d) = c. Then f is contra rwg-continuous and contra *g-continuous, but not contra $s \alpha rps$ -continuous.

Example 3.16

Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{\phi,\{a\},\{b\},\{a,b\},\{a,b,c\},\{a,b,d\},X\}$ and $\sigma = \{\phi,\{b,c,d\},Y\}$ on X and Y respectively. Let the function $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = b, f(b) = c, f(c) = d, f(d) = a. Then f is contra recontinuous, but not contra $s \alpha rps$ -continuous.

Example 3.17

Let $X = Y = \{a,b,c,d\}$ with topologies $\tau = \{\phi,\{a\},\{b\},\{a,b\},\{a,b,c\},\{a,b,d\},X\}$ and $\sigma = \{\phi,\{d\},Y\}$ on X and Y respectively. Let the function $f\colon (X,\tau) \to (Y,\sigma)$ be defined as f(a) = d, f(b) = c, f(c) = b, f(d) = a. Then f is contra $s \alpha r p s$ -continuous, but not contra g-continuous.

The concept of $s \alpha r p s$ -continuity and contra $s \alpha r p s$ -continuity are independent of each other as shown in the Examples 3.18 and 3.19.

Example 3.18

Let $X = Y = \{a,b,c,d\}$ with topologies $\tau = \{\phi,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\},X\}$ and $\sigma = \{\phi,\{a,c,d\},Y\}$ on X and Y respectively. Let the function $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = b, f(b) = a, f(c) = b, f(d) = c. Then f is $s \alpha r p s$ -continuous, but not contra $s \alpha r p s$ -continuous.

Example 3.19

Let $X = Y = \{a,b,c,d\}$ with topologies $\tau = \{\phi,\{a\},\{a,b\},X\}$ and $\sigma = \{\phi,\{a,d\},Y\}$ on X and Y respectively. Let the function $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = c, f(b) = d, f(c) = b, f(d) = a. Then f is contra *sarps*-continuous, but not *sarps*-continuous. Thus the above discussions lead to the following diagram. In this diagram, " $A \rightarrow B$ " means A implies B but not conversely and " $A \rightarrow B$ " means A and B are independent of each other.

Definition 3.20

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called contra *sarps*-irresolute if $f^{-1}(V)$ is *sarps*-closed in (X, τ) for every *sarps*-open subset V of (Y, σ) . The concepts of *sarps*-irresolute and contra *sarps*-irresolute are independent of each other as shown in the Examples 3.21 and 3.22.

Example 3.21

Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{\phi,\{b,c\},X\}$ and $\sigma = \{\phi,\{a\},\{a,c\},Y\}$ on X and Y respectively. Let the function $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = a, f(b) = b, f(c) = c. Then f is contra $s \alpha r p s$ -irresolute, but not $s \alpha r p s$ -irresolute.

Example 3.22

Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}$ and $\sigma = \{\phi, \{b,c\}, Y\}$ on X and Y respectively. Let the function $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as f(a) = b, f(b) = c, f(c) = a. Then f is $s \alpha r p s$ -irresolute, but not contra $s \alpha r p s$ -irresolute.

Theorem 3.23

Every contra $s \alpha r p s$ -irresolute function is contra $s \alpha r p s$ -continuous.

Proof

Suppose $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra $s \alpha rps$ -irresolute. Let V be any open subset of (Y, σ) . Since every open set is semi-open and by using Proposition 3.2 of [28], V is $s \alpha rps$ -open in (Y, σ) . Since f is contra $s \alpha rps$ -irresolute, $f^{-1}(V)$ is $s \alpha rps$ -closed in (X, τ) . Hence f is contra $s \alpha rps$ -continuous. Converse of

the above theorem need not be true as seen in the following example.

Example 3.24

Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{\phi,\{a\},\{a,c\},X\}$ and $\sigma = \{\phi,\{c\},\{b,c\},Y\}$ on X and Y respectively. Let the function $f: (X,\tau) \rightarrow (Y,\sigma)$ be defined as f(a) = a, f(b) = b, f(c) = c. Then f is contra $s \alpha r p s$ -continuous, but not contra $s \alpha r p s$ -irresolute.

Theorem 3.25

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \mu)$ be two functions. Let $h = g \circ f$. Then

- (i) h is contra $s \alpha r p s$ -continuous if f is contra $s \alpha r p s$ -continuous and g is continuous.
- (ii) h is contra $s \alpha r p s$ -continuous if f is $s \alpha r p s$ -irresolute and g is contra-continuous.
- (iii) h is contra $s \alpha r p s$ -continuous if f is $s \alpha r p s$ -irresolute and g is contra $s \alpha r p s$ -continuous.
- (iv) h is $s \alpha rps$ -continuous and contra $s \alpha rps$ -continuous if f is contra $s \alpha rps$ -continuous and g is perfectly-continuous.
- (v) h is $s \alpha r p s$ -continuous if f is contra $s \alpha r p s$ -continuous and g is contra-continuous.

Proof

- (i) Let V be open in (Z, μ) . Since g is continuous, g⁻¹(V) is open in (Y, σ) . Since f is contra *sarps*-continuous, f⁻¹(g⁻¹(V)) is *sarps*-closed in (X, τ) . That is, $(g \circ f)^{-1}(V)$ is *sarps*-closed in (X, τ) . This proves (i).
- (ii) Let V be open in (Z, μ) . Since g is contracontinuous, $g^{-1}(V)$ is closed in (Y, σ) . By Lemma 2.8, $g^{-1}(V)$ is *sarps*-closed in (Y, σ) . Since f is *sarps*-irresolute, $f^{-1}(g^{-1}(V))$ is *sarps*-closed in (X, τ) . That is, $(g \circ f)^{-1}(V)$ is *sarps*-closed in (X, τ) . This proves (ii).
- (iii) Let V be open in (Z, μ) . Since g is contra $s \alpha r p s$ -continuous, g $^{-1}(V)$ is $s \alpha r p s$ -closed in (Y, σ) . Since f is $s \alpha r p s$ -irresolute, f $^{-1}(g^{-1}(V))$ is $s \alpha r p s$ -closed in (X, τ) . That is, $(g \circ f)^{-1}(V)$ is $s \alpha r p s$ -closed in (X, τ) . This proves (iii).
- (iv) Let V be closed in (Z, μ) . Since g is perfectly-continuous, $g^{-1}(V)$ is clopen in (Y, σ) . Since f is contra $s \alpha r p s$ -continuous, $f^{-1}(g^{-1}(V))$ is both $s \alpha r p s$ -closed and $s \alpha r p s$ -closed in (X, τ) . This proves (iv).

(v) Let V be closed in (Z, μ) . Since g is contracontinuous, $g^{-1}(V)$ is open in (Y, σ) . Since f is contra sarps-continuous, $f^{-1}(g^{-1}(V))$ is sarps-closed in (X, τ) . That is, $(g \circ f)^{-1}(V)$ is sarps-closed in (X, τ) . This proves (v).

Theorem 3.26

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be surjective, $s \alpha r p s$ -irresolute and $s \alpha r p s$ -open and $g: (Y, \sigma) \rightarrow (Z, \mu)$ be any function. Let every $s \alpha r p s$ -open set in (X, τ) be open. Then $g \circ f$ is contra $s \alpha r p s$ -continuous if and only if g is contra $s \alpha r p s$ -continuous.

Proof

Assume that $g \circ f$ is contra $s \alpha r p s$ -continuous. Let V be closed in (Z, μ) . Since $g \circ f$ is contra $s \alpha r p s$ -continuous, $(g \circ f)^{-1}(V)$ is $s \alpha r p s$ -open in (X, τ) . By assumption, $(g \circ f)^{-1}(V)$ is open in (X, τ) . That is $f^{-1}(g^{-1}(V))$ is open in (X, τ) . Since f is $s \alpha r p s$ -open, $f(f^{-1}(g^{-1}(V)))$ is $s \alpha r p s$ -open in (Y, σ) . That is $g^{-1}(V)$ is $s \alpha r p s$ -open in (Y, σ) . Hence g is contra $s \alpha r p s$ -continuous. The converse part follows from Theorem 3.25(iii).

Theorem 3.27

The following are equivalent for a function $f:(X,\tau) \rightarrow (Y,\sigma)$.

- (i) f is contra sarps-continuous.
- (ii) The inverse image of each closed set in (Y, σ) is $s \alpha r p s$ -open in (X, τ) .

Proof

$$(i) \Rightarrow (ii)$$

Suppose (i) holds. Let V be closed in (Y, σ) . Then $Y \setminus V$ is open in (Y, σ) . By assumption, $f^{-1}(Y \setminus V)$ is $s \alpha r p s$ -closed in (X, τ) . But $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ which is $s \alpha r p s$ -closed in (X, τ) . Therefore $f^{-1}(V)$ is $s \alpha r p s$ -open in (X, τ) . This proves (i) \Longrightarrow (ii).

$$(ii) \Rightarrow (i)$$

Let V be open in (Y, σ) . Then $Y \setminus V$ is closed in (Y, σ) . By assumption, $f^{-1}(Y \setminus V)$ is $s \alpha r p s$ -open in (X, τ) . But $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ which is $s \alpha r p s$ -open in (X, τ) . Therefore $f^{-1}(V)$ is $s \alpha r p s$ -closed in (X, τ) . This proves (ii) \Rightarrow (i).

Definition 3.28

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called perfectly contra

sarps-irresolute if $f^{-1}(V)$ is both sarps-closed and sarps-open in (X, τ) for every sarps-open subset V of (Y, σ) .

Theorem 3.29

A function f is perfectly contra $s \alpha r p s$ -irresolute if and only if f is contra $s \alpha r p s$ -irresolute and $s \alpha r p s$ -irresolute.

Proof

Suppose f is perfectly contra $s \alpha r p s$ -irresolute. Let V be $s \alpha r p s$ -open in Y. Since f is perfectly contra $s \alpha r p s$ -irresolute, f $^{-1}(V)$ is both $s \alpha r p s$ -closed and $s \alpha r p s$ -open in (X, τ) . Hence f is contra $s \alpha r p s$ -irresolute and $s \alpha r p s$ -irresolute.

Conversely, suppose f is contra slpha rps-irresolute and slpha rps-irresolute. Let V be slpha rps-open in (Y, σ) . Since f is contra slpha rps-irresolute and slpha rps-irresolute, f $^{-1}(V)$ is both slpha rps-closed and slpha rps-open in (X, τ) . Hence f is perfectly contra slpha rps-irresolute.

Definition 3.30

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called almost contra $s \alpha r p s$ -continuous if $f^{-1}(V)$ is $s \alpha r p s$ -closed in (X, τ) for every regular open subset V of (Y, σ) .

Theorem 3.31

Every contra $s \alpha r p s$ -continuous function is almost contra $s \alpha r p s$ -continuous.

Proof

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function. Suppose f is contra $s \alpha r p s$ -continuous. Let V be a regular open subset of (Y, σ) . Since every regular open set is open, V is open in (Y, σ) . Since f is contra f continuous, $f^{-1}(V)$ is f continuous. Hence f is almost f continuous.

Conclusion

In this paper, we introduced and investigated the notion of contra $s\alpha rps$ -continuous functions by utilizing $s\alpha rps$ -closed sets. We obtained fundamental properties of contra $s\alpha rps$ -continuous functions and discussed the relationships between contra $s\alpha rps$ -continuity and other related functions.

References

- [1] Ahmad-Al-Omari, Mohd. Salmi Md Noorani, Bulletin of Mathematical Sci. Society, 32, (2009), 19.
- [2] M. Akdag, A. Ozkan, *J. New Results in Sci.*, 1, (2012), 40.
- [3] K. Alli, Int. J. Mathematics Trends and Technology, 4 (11) (2013).
- [4] A. K. Al-Obiadi, J. Pure and Appl. Sci., 24 (3) (2011).
- [5] S.P. Arya, T.M. Nour, *Indian J. Pure. Appl. Math.*, 21 (8), (1990), 717.
- [6] M. Caldas, S. Jafari, T. Noiri, M. Simoes, *Chaos Solitons Fractals*, 32, (2007), 1597.
- [7] M. Caldas, S. Jafari, K. Viswanathan S. Krishnaprakash, *Kochi J. Math.*, 5, (2010), 67.
- [8] J. Dontchev, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16, (1995), 35.
- [9] J. Dontchev, Int. Math. Sci., 19 (2), (1996), 303.
- [10] J. Dontchev, T. Noiri, 10 (2), (1999), 159.
- [11] J. Dontchev, T. Noiri, *Acta Math. Hungar.*, 89 (3), (2000), 211.
- [12] E. Ekici, Chaos Solitons and Fractals, 35, (2008), 71.
- [13] Y. Gnanambal, *Indian J. Pure Appl. Math.*, 28 (3), (1997), 351.
- [14] K. Indirani, P. Sathishmohan, V. Rajendran, Asian J. Computer Science Information Technology, 4(4), (2014), 39.
- [15] S. Jafari, T. Noiri, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., 42, (1999), 27.
- [16] S. Jafari, T, Noiri, *Iran. Int. J. Sci.*, 2 (2), (2001), 153.
- [17] C. Janaki, Studies on πgα-closed sets in topology, Ph.D Thesis, Bharathiar University, Coimbatore, India, (1999).
- [18] D.S. Jankovic, Anna. De. La. Soc. Sci. De Bruxelles, 97 (2), (1983), 59.
- [19] N. Levine, Amer. Math. Monthly, 70, (1963), 36.

- [20] N. Levine, Rend. Circ. Mat. Palermo, 19 (2), (1970), 89.
- [21] H, Maki, R. Devi, K. Balachandran, Mem. Fac. sci. Kochi. Univ. Ser. A. Math., 15, (1994), 51.
- [22] H, Maki, J. Umehara, T. Noiri, Generalized preclosed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 17, (1996), 33.
- [23] K. Mariappa, S. Sekar, *Int. J. Math. Analysis*, 7 (13), (2013), 613.
- [24] O. Njastad, *Pacific J. Math.*, 15, (1965), 961.
- [25] T. Noiri, J. Korean Math. Soc., 16, (1980), 161.
- [26] N. Palaniappan, K.C. Rao, *Kyungpook Math. J.*, 33 (2), (1993), 211.
- [27] J.H. Park, *Indian J. Pure. Appl. Math.*, (2004).
- [28] T. Shyla Isac Mary, A. Subitha, *Advances in Applied Mat. Analysis*, 1, (2015), 19.
- [29] T. Shyla Isac Mary, A. Subitha, *Asian J. Mat. Computer Research*, 10 (3), (2016), 223.
- [30] G. Sindhu, K. Indirani, *Int. J. Math. Archive*, 4 (12), (2013), 87.
- [31] M.K. Singal, A.R. Singal, *Yokohama. Math. J.*, 16 (1968), 63.
- [32] D. Sreeja, C. Janaki, *Int. J. Statistika and Mathematika*, 1 (2), (2011), 46.
- [33] A. Subitha, T. Shyla Isac Mary, *Int. J. Math. Archive*, 6(2), (2015), 1.
- [34] S. Syed Ali Fathima, M. Mariasingam, *On Contra #Rg-continuous Functions*, 3(2), (2013), 939.
- [35] A. Vadivel, K. Vairamanickam, *Int. J. Math. Analysis*, 3(37), (2009), 1803.
- [36] M.K.R.S. Veerakumar, *Acta Ciencia India*, 1, (2002), 51.
- [37] M.K.R.S. Veerakumar, *Antarctica J. Math.*, 3 (1), (2006), 43.
- [38] V. Zaitsav, , *Dokl. Akad. Nauk SSSR*, 178, (1968), 778.