

RESEARCH ARTICLE

Geometric decomposition of complete tripartite graphs

E. Ebin Raja Merly, D. Subitha*

Department of Mathematics, Nesamony Memorial Christian College, Marthandam-629165, Tamil Nadu, India

Received 6 October, 2015; Accepted 2 March 2016 Available online 2 March 2016

Abstract

Let G = (V, E) be a simple connected graph with p vertices and q edges. If $G_1, G_2, G_3, \ldots, G_n$ are connected edge disjoint subgraphs of G with $E(G) = E(G_1) \cup E(G_2) \cup E(G_3) \cup \ldots \cup E(G_n)$, then $(G_1, G_2, G_3, \ldots, G_n)$ is said to be a decomposition of G. A decomposition $(G_1, G_2, G_3, \ldots, G_n)$ of G is said to be an Arithmetic Decomposition if each G_i is connected and $|E(G_i)| = a + (i - 1)d$, for every $i = 1, 2, 3, \ldots, n$ and $a, d \in N$. In this paper, we introduced a new concept Geometric Decomposition. A decomposition $(G_a, G_{ar}, G_{ar^2}, G_{ar^3}, \ldots, G_{ar^{n-1}})$ of G is said to be a Geometric Decomposition (GD) if each $G_{ar^{i-1}}$ is connected and $|E(G_{ar^{i-1}})| = ar^{i-1}$, for every $i = 1, 2, 3, \ldots, n$ and $a, r \in N$. Clearly $q = \frac{a(r^n - 1)}{r-1}$. If a = 1 and r = 2, then $q = 2^n - 1$. Also we obtained necessary and sufficient conditions of complete tripartite graphs which are admitting a Geometric Decomposition.

Keywords

Decomposition of graph Complete tripartite graph Arithmetic decomposition Geometric decomposition

Introduction

In this paper, we consider simple undirected graph without loops or multiple edges. For all other standard terminology and notations we follow Harary [1]. Gnanadhas and Paulraj Joseph introduced the concept of Continuous Monotonic Decomposition (CMD) of graphs[2]. Ebin Raja Merly and Gnanadhas introduced the concept of Arithmetic Odd Decomposition (AOD) of spider tree [3].

Definition: Let G = (V, E) be a simple connected graph with p vertices and q edges. If $G_1, G_2, G_3, ..., G_n$ are connected edge disjoint subgraphs of G with $E(G) = E(G_1) \cup E(G_2) \cup E(G_3) \cup ... \cup E(G_n)$, then $(G_1, G_2, G_3, ..., G_n)$ is said to be a decomposition of G.

*Corresponding author E-mail : subitha0306@gmail.com

Published by GM SOFTWARE

Definition: A decomposition $(G_1, G_2, G_3, ..., G_n)$ of G is said to be an Arithmetic Decomposition (AD) if each G_i is connected and $|E(G_i)| = a+(i - 1)d$, for every i = 1, 2, 3, ..., n and $a, d \in N$.

Definition: A graph G = (V, E) is *n*-partite, n > 1, if it is possible to partition V into n subsets: $V_1, V_2, V_3, \ldots, V_n$ such that every edge of E joins a vertex of V_i to a vertex of V_j , $i \neq j$. When n = 3, *n*-partite graphs are called complete tripartite graph.

Geometric decomposition of graphs

Definition: A decomposition $(G_a, G_{ar}, G_{ar^2}, G_{ar^3}, \dots, G_{ar^{n-1}})$ of G is said to be a GD if

each $G_{ar^{i-}}$ is connected and $|E(G_{ar^{i-1}})| = ar^{i-1}$, for every i = 1, 2, 3, ..., n and $a, r \in \mathbb{N}$. Clearly $q = \frac{a(r^n - 1)}{r-1}$. If a = 1 and r = 2, then $q = 2^n - 1$. We know that $2^n - 1$ is the sum of $2^0, 2^1, 2^2, 2^3, ..., 2^{n-1}$. That is, $2^n - 1$ is the sum of $1, 2, 4, 8, ..., 2^{n-1}$. Thus we denote the GD as $(G_1, G_2, G_4, ..., G_2^{n-1})$. A Petersen graph admits GD (G_1, G_2, G_4, G_8) of G.

Theorem: A graph G admits GD ($G_1, G_2, G_4, ..., G_{2^{n-1}}$) if and only if $q = 2^n - 1$ for each $n \in \mathbb{N}$.

Proof: Let G be a connected graph with $q = 2^n - 1$. Let u, v be two vertices of G such that d(u,v) is maximum.

Let $N_r(u) = \{ v \in V/d(u, v) = r \}$. If $d(u) = 2^{n-1}$, choose 2^{n-1} edges incident with u. Let $G_{2^{n-1}}$ be a subgraph induced by these 2^{n-1} edges. If $d(u) < 2^{n-1}$, then choose 2^{n-1} edges incident with u vertices of $N_1(u)$, $N_2(u)$,... successively such that the subgraph $G_{2^{n-1}}$ induced by these edges is connected. In both cases $G - G_{2^{n-1}}$ has a connected component H_1 with $2^{n} - 2^{n-1} - 1$ edges.

Now, consider H_1 and proceed as above to get $G_{2^{n-2}}$ such that $H_1 - G_{2^{n-2}}$ has a connected component H_2 of size $2^n - 2^{n-1} - 2^{n-2} - 1$ edges. Proceeding like this we get a connected subgraph G_2 such that $H_{2^{n-2}}$ is a graph with one edge taken as G_1 . Thus $(G_1, G_2, G_4, ..., G_{2^{n-1}})$ is a GD of *G*. Conversely, Suppose *G* admits GD $(G_1, G_2, G_4, ..., G_{2^{n-1}})$. Then obviously, $q(G)=1+2+4+...+2^{n-1}=2^n - 1$ for each $n \in \mathbb{N}$.

Geometric decomposition of complete tripartite graphs

Theorem: A complete tripartite graph $K_{1, 2^{n}-1, 2^{n}-1}$ admits GD ($G_1, G_2, G_4, ..., G_{2^{2n}-1}$) if and only if $q = 2^{2n} - 1$.

Proof: Suppose $q(K_{1, 2^{n}-1, 2^{n}-1}) = (2^{n}-1)+(2^{n}-1)^{2}+$

Applying induction on *n*. When n = 1, q = 3. Since *G* is connected, *G* can be decomposed into G_1 and G_2 . When n = 2, q = 15, *G* can be decomposed into G_1 , G_2 , G_4 , and G_8 .

Suppose the result is true for n = k. Let *G* be any connected graph with $q = 2^{2k}$ -1. Then *G* can be decomposed into $G_1, G_2, G_4, \ldots, G_{2^{2k-1}}$. Let n = k + 1. Let *G'* be a connected graph with $2^{2(k+1)}$ -1 edges. Now $2^{2(k+1)}$ -1 = 2^{2k+2} - $1 = 4 \cdot 2^{2k}$ - $1 = (2^{2k} - 1) + 3 \cdot 2^{2k}$.

Therefore G' contains $(2^{2k} - 1) + 3.2^{2k}$ edges. Let G''be a connected subgraph of G' with 3.2^{2k} edges. Now $3 \cdot 2^{2k} = 2^{2k} + 2^{2k+1}$. Therefore G'' can be decomposed in to $G_{2^{2k}}$ and $G_{2^{2k+1}}$. Let G^* be another connected subgraph of G' excluding the edges of $G_{2^{2k}}$ and $G_{2^{2k+1}}$. Clearly G^* contains 2^{2k} -1 edges. By induction hypothesis G^* can be decomposed into ksubgraphs $G_1, G_2, G_4, \ldots, G_{2^{2k-1}}$. Thus G' can be decomposed into $G_1, G_2, G_4, \ldots, G_{2^{2k-1}}, G_{2^{2k}}$ and $G_{2^{2k+1}}$. That is, G' admits GD having (k+1) subgraphs. Hence by induction if $q = 2^{2n} - 1$ for each $n \in \mathbb{N}$, G admits GD (G_1 , G_2 , G_4 , ..., G_2^{2n-1}). Conversely, Suppose G admits GD (G_1 , G_2 , G_4 , ..., $G_{2^{2n-1}}$). Then obviously, $q(G)=1+2+4+...+2^{2n-1}$ $= 2^{2n} - 1$ for each $n \in \mathbb{N}$.

Example: The GD (G_1, G_2, G_4, G_8) of $K_{1,3,3}$.

Theorem: A complete tripartite graph $K_{1,3,m}$ accepts GD $(G_1, G_2, G_4, ..., G_{2^{n+1}})$ if and only if $m = 2^n - 1$.

Proof: Assume that a complete tripartite graph $K_{1,3,m}$ accepts GD ($G_1, G_2, G_4, ..., G_{2^{n+1}}$). We have, $q(K_{1,3,m}) = 4m+3$. That is, the graph $K_{1,3,m}$ accepts GD ($G_1, G_2, G_4, ..., G_{2^{n+1}}$) if and only if $q(K_{1,3,m}) = 2^{n+2}$. *1*. That is, $4m+3=2^{n+2}-1$. That is, $m = 2^n - 1$. Conversely, Consider $K_{1,3,m}$ with $m = 2^n - 1$. Then $q(K_{1,3,m}) = 4(2^n - 1)+3 = 2^{n+2}-1$. This implies that, $K_{1,3,m}$ can be decomposed into $G_1, G_2, G_4, ..., G_{2^{n+1}}$.

Example: The GD $(G_1, G_2, G_4, G_8, G_{16})$ of $K_{1,3,7}$.

Fig 3

The following table shows that GD of $K_{1,3,m}$.

т	$q(K_{1,3,m})$	GD
1	7	$G_1, G_2, G_4.$
3	15	$G_1, G_2, G_4, G_8.$
7	31	$G_1, G_2, G_4, \ldots, G_{16}.$
15	63	$G_1, G_2, G_4, \ldots, G_{32}.$
31	127	$G_1, G_2, G_4, \ldots, G_{64}.$
63	255	$G_1, G_2, G_4, \ldots, G_{128}.$
127	511	$G_1, G_2, G_4, \ldots, G_{256}.$
255	1023	$G_1, G_2, G_4, \ldots, G_{512}.$
511	2047	$G_1, G_2, G_4, \ldots, G_{1024}.$
1023	4095	$G_1, G_2, G_4, \ldots, G_{2048}.$

Theorem: A Complete Tripartite graph $K_{3,5,m}$ accepts GD ($G_1, G_2, G_4, ..., G_{2^{n+3}}$) if and only if $m = 2(2^n-1)$.

Proof: Assume that a complete tripartite graph $K_{3,5,m}$ accepts GD $(G_1, G_2, G_4, ..., G_{2^n})$. We have, $q(K_{3,5,m}) = 8m+15$. That is, the graph $K_{3,5,m}$ accepts GD $(G_1, G_2, G_4, ..., G_{2^{n+3}})$ if and only if $q(K_{3,5,m}) = 2^{n+4}-1$. That is, $8m+15 = 2^{n+4}-1$. That is, $m = 2(2^n - 1)$. Conversely, Consider $K_{3,5,m}$ with $m = 2(2^n - 1)$. Then

 $q(K_{3,5,m}) = 8(2(2^n - 1))+15 = 2^{n+4} - 1$. This implies that, $K_{3,5,m}$ can be decomposed into $G_1, G_2, G_4, ..., G_{2^{n+3}}$.

Example: The GD(G_1 , G_2 , G_4 , G_8 , G_{16}) of $K_{3,5,2}$.

The following table gives the GD of $K_{3,5,m}$ for different values of *m*.

т	$q(K_{3,5,m})$	GD
2	31	$G_1, G_2, G_4, \ldots, G_{16}.$
6	63	$G_1, G_2, G_4, \ldots, G_{32}.$
14	127	$G_1, G_2, G_4, \ldots, G_{64}.$
30	255	$G_1, G_2, G_4, \ldots, G_{128}.$
62	511	$G_1, G_2, G_4, \ldots, G_{256}.$
126	1023	$G_1, G_2, G_4, \ldots, G_{512}.$
254	2047	$G_1, G_2, G_4, \ldots, G_{1024}.$
510	4095	$G_1, G_2, G_4, \ldots, G_{2048}.$
1022	8191	$G_1, G_2, G_4, \ldots, G_{4096}.$
2046	16383	$G_1, G_2, G_4, \ldots, G_{8192}.$

In the same manner complete tripartite graph $K_{2,5,m}$ accepts GD ($G_1, G_2, G_4, \ldots, G_{2^{3n+1}}$) if and only if $m = \frac{2^{8n+2}-11}{7}$.

Conclusions

The GD of complete tripartite has been studied. The study can be extended for m-paratite graphs.

References

- [1] F. Harary, , "Graph Theory", Narosa Publishing House, New Delhi, (1988).
- [2] N. Gnanadhas, P. Joseph, J., International J. Management Systems., 16, (2000), 333.
- [3] E.E.R. Merly, N. Gnanadhas, *International J. Mathematics Res.*, 3, (2011), 447.
- [4] L.R. Foulds, , "Graph Theory Application", Narosa Publishing House, New Delhi, (1991).
- [5] J. Varghese, A. Antonysamy, *Mapna J. Sci.*, 8(2), (2010)
- [6] A. Nagarajan, S.N. Krishnan, *International J. Management Systems*, 21, (2005), 91.