RESEARCH ARTICLE

Geometric decomposition of complete tripartite graphs

E. Ebin Raja Merly, D. Subitha*
Department of Mathematics, Nesamony Memorial Christian College,Marthandam-629165,Tamil Nadu, India

Received 6 October, 2015; Accepted 2 March 2016
Available online 2 March 2016

Abstract

Let $G=(V, E)$ be a simple connected graph with p vertices and q edges. If $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ are connected edge disjoint subgraphs of G with $E(G)=E\left(G_{l}\right) \cup E\left(G_{2}\right) \cup E\left(G_{3}\right) \cup \ldots \cup E\left(G_{n}\right)$, then $\left(G_{l}, G_{2}, G_{3}, \ldots, G_{n}\right)$ is said to be a decomposition of G. A decomposition $\left(G_{1}, G_{2}, G_{3}, \ldots, G_{n}\right)$ of G is said to be an Arithmetic Decomposition if each G_{i} is connected and $\left|E\left(G_{i}\right)\right|=$ $a+(i-1) d$, for every $i=1,2,3, \ldots, n$ and $a, d \in \mathrm{~N}$. In this paper, we introduced a new concept Geometric Decomposition. A decomposition (G_{a}, $\left.G_{a r}, G_{a r^{2}}, G_{a r^{3}}{ }^{3}, \ldots, G_{a r}{ }^{n-1}\right)$ of G is said to be a Geometric Decomposition (GD) if each $G_{a r} r^{i-1}$ is connected and $\left|E\left(G_{a r} r^{i-1}\right)\right|=a r^{i-1}$, for every $i=1,2$, $3, \ldots, n$ and $a, r \in \mathrm{~N}$. Clearly $q=\frac{a\left(r^{n}-1\right)}{r-1}$. If $a=1$ and $r=2$, then $q=2^{n}-1$.

 Also we obtained necessary and sufficient conditions of complete tripartite graphs which are admitting a Geometric Decomposition.

Introduction

In this paper, we consider simple undirected graph without loops or multiple edges. For all other standard terminology and notations we follow Harary [1]. Gnanadhas and Paulraj Joseph introduced the concept of Continuous Monotonic Decomposition (CMD) of graphs[2]. Ebin Raja Merly and Gnanadhas introduced the concept of Arithmetic Odd Decomposition (AOD) of spider tree [3].

Definition: Let $G=(V, E)$ be a simple connected graph with p vertices and q edges. If $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ are connected edge disjoint subgraphs of G with $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E\left(G_{3}\right) \cup$ $\ldots \cup E\left(G_{n}\right)$, then $\left(G_{1}, G_{2}, G_{3}, \ldots, G_{n}\right)$ is said to be a decomposition of G.

*Corresponding author

E-mail : subitha0306@gmail.com
Published by GM SOFTWARE

Definition: A decomposition $\left(G_{1}, G_{2}, G_{3}\right.$, \ldots, G_{n}) of G is said to be an Arithmetic Decomposition (AD) if each G_{i} is connected and $\left|E\left(G_{i}\right)\right|=a+(i-1) d$, for every $\quad i=1,2,3, \ldots, n$ and $a, d \in \mathrm{~N}$.

Definition: A graph $G=(V, E)$ is n partite, $n>1$, if it is possible to partition V into n subsets: $V_{1}, V_{2}, V_{3}, \ldots, \mathrm{~V}_{n}$ such that every edge of E joins a vertex of V_{i} to a vertex of $V_{j}, \quad i \neq j$. When $n=3, n$ partite graphs are called complete tripartite graph.

Geometric decomposition of graphs

Definition: A decomposition ($G_{a}, G_{a r}, G_{a r^{2}}$, $G_{a r}{ }^{3}, \ldots, G_{a r}^{n-1}$) of G is said to be a GD if
each $G_{a r r^{i-}}$ is connected and $\left|E\left(G_{a r^{i-1}}\right)\right|=a r^{i-1}$, for every $i=1,2,3, \ldots, n$ and $a, r \in \mathrm{~N}$. Clearly q $=\frac{a\left(r^{n}-1\right)}{r-1}$. If $a=1$ and $r=2$, then $q=2^{n}-1$. We know that $2^{n}-1$ is the sum of $2^{0}, 2^{1}, 2^{2}, 2^{3}, \ldots, 2^{n-}$ 1 . That is, $2^{n}-1$ is the sum of $1,2,4,8, \ldots, 2^{n-1}$. Thus we denote the GD as ($G_{1}, G_{2}, G_{4}, \ldots, G_{2^{n-1}}$). A Petersen graph admits $\operatorname{GD}\left(G_{1}, G_{2}, G_{4}, G_{8}\right)$ of G.

Fig 1
Theorem: A graph G admits $\operatorname{GD}\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2^{n}}\right.$ 1) if and only if $q=2^{n}-1$ for each $n \in \mathrm{~N}$.

Proof: Let G be a connected graph with $q=2^{n}-1$. Let u, v be two vertices of G such that $d(u, v)$ is maximum.
Let $N_{r}(u)=\{v \in V / d(u, v)=r\}$. If $d(u)=2^{n-1}$, choose 2^{n-1} edges incident with u. Let $G_{2^{n-1}}$ be a subgraph induced by these 2^{n-1} edges. If $d(u)<2^{n-}$ 1 , then choose 2^{n-1} edges incident with u vertices of $N_{1}(u), N_{2}(u), \cdots$ successively such that the subgraph $G_{2^{n-1}}$ induced by these edges is connected. In both cases $G-G_{2^{n-1}}$ has a connected component H_{1} with $2^{n-2} 2^{n-1}-1$ edges.
Now, consider H_{1} and proceed as above to get $G_{2^{n-2}}$ such that $H_{1}-G_{2^{n-2}}$ has a connected component H_{2}
of size $2^{n}-2^{n-1}-2^{n-2}-1$ edges. Proceeding like this we get a connected subgraph G_{2} such that $H_{2^{n-2}}$ is a graph with one edge taken as G_{1}. Thus $\left(G_{1}, G_{2}, G_{4}, \ldots\right.$, $G_{2^{n-1}}$) is a GD of G. Conversely, Suppose G admits GD $\left(G_{1}, \quad G_{2}, \quad G_{4}, \quad \ldots, \quad G_{2^{n-1}}\right)$. Then obviously, $q(G)=1+2+4+\ldots+2^{n-1}=2^{n}-1$ for each $n \in \mathrm{~N}$.

Geometric decomposition of complete tripartite graphs

Theorem: A complete tripartite graph $K_{1,2^{n}-1,2^{n}-1}$ admits GD ($\left.G_{1}, G_{2}, G_{4}, \ldots, G_{2}{ }^{2 n-1}\right)$ if and only if q $=2^{2 n}-1$.

Proof: Suppose $q\left(K_{1,2^{n}-1,2^{n}-1}\right)=\left(2^{n-1}\right)+\left(2^{n_{-}-1}\right)^{2}+\left(2^{n_{-}}\right.$ 1) $=2^{n}-1+2^{2 n}+1-2.2^{n}+2^{n}-1=2^{2 n-1}$ for each n.

Applying induction on n. When $n=1, q=3$. Since G is connected, G can be decomposed into G_{l} and G_{2} When $n=2, q=15, G$ can be decomposed into G_{1}, G_{2}, G_{4}, and G_{8}.
Suppose the result is true for $n=k$. Let G be any connected graph with $q=2^{2 k}-1$. Then G can be decomposed into $G_{1}, G_{2}, G_{4}, \ldots, G_{2}{ }^{2 k-1}$. Let $n=k+1$. Let G^{\prime} be a connected graph with $2^{2(k+1)}-1$ edges. Now $2^{2(k+1)}-1=2^{2 k+2}-1=4.2^{2 k}-1=\left(2^{2 k}-1\right)$ $+3.2^{2 k}$.
Therefore G^{\prime} contains $\left(2^{2 k}-1\right)+3.2^{2 k}$ edges. Let $G^{\prime \prime}$ be a connected subgraph of G^{\prime} with $3.2^{2 k}$ edges. Now $3.2^{2 k}=2^{2 k}+2^{2 k+1}$. Therefore $G^{\prime \prime}$ can be decomposed in to $G_{2}{ }^{2 k}$ and $G_{2}{ }^{2 k+1}$. Let G^{*} be another connected subgraph of G^{\prime} excluding the edges of $G_{2^{2 k}}$ and $G_{2^{2 k+1}}$. Clearly G^{*} contains $2^{2 k}-1$ edges. By induction hypothesis G^{*} can be decomposed into k subgraphs $G_{1}, G_{2}, G_{4}, \ldots, G_{2}{ }^{2 k-1}$. Thus G^{\prime} can be decomposed into $G_{1}, G_{2}, G_{4}, \ldots, G_{2^{2 k-1}}, G_{2^{2 k}}$ and $G_{2^{2 k+1}}$. That is, G^{\prime} admits GD having ($k+1$) subgraphs. Hence by induction if $q=2^{2 n}-1$ for each $n \in \mathrm{~N}, G$ admits GD ($\left.G_{1}, G_{2}, G_{4}, \ldots, G_{2}{ }^{2 n-1}\right)$. Conversely, Suppose G admits $\mathrm{GD}\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2^{2 n-1}}\right)$. Then obviously, $q(G)=1+2+4+\ldots+2^{2 n-1} \quad=2^{2 n-1}$ for each $n \in \mathrm{~N}$.

Example: The GD $\left(G_{1}, G_{2}, G_{4}, G_{8}\right)$ of $K_{1,3,3}$.

Fig 2
Theorem: A complete tripartite graph $K_{1,3, m}$ accepts $\mathrm{GD}\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2^{n+1}}\right)$ if and only if $m=2^{n}-1$.

Proof: Assume that a complete tripartite graph $K_{1,3, m}$ accepts GD $\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2^{n+1}}\right)$. We have, $q\left(K_{1,3, m}\right)=4 m+3$. That is, the graph $K_{1,3, m}$ accepts GD $\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2^{n+1}}\right)$ if and only if $q\left(K_{1,3, m}\right)=2^{n+2}$ 1. That is, $4 m+3=2^{n+2}-1$. That is, $m=2^{n}-1$.

Conversely, Consider $K_{1,3, m}$ with $m=2^{n}-1$. Then $q\left(K_{1,3, m}\right)=4\left(2^{n}-1\right)+3=2^{n+2}-1$. This implies that, $K_{1,3, m}$ can be decomposed into $G_{1}, G_{2}, G_{4}, \ldots, G_{2^{n+1}}$.

Example: The GD $\left(G_{1}, G_{2}, G_{4}, G_{8}, G_{16}\right)$ of $K_{1,3,7}$.

Fig 3

The following table shows that GD of $K_{1,3, m}$.

m	$q\left(K_{1,3, m}\right)$	GD
1	7	G_{1}, G_{2}, G_{4}.
3	15	$G_{1}, G_{2}, G_{4}, G_{8}$.
7	31	$G_{1}, G_{2}, G_{4}, \ldots, G_{16}$.
15	63	$G_{1}, G_{2}, G_{4}, \ldots, G_{32 .}$
31	127	$G_{1}, G_{2}, G_{4}, \ldots, G_{64 .}$
63	255	$G_{1}, G_{2}, G_{4}, \ldots, G_{128}$.
127	511	$G_{1}, G_{2}, G_{4}, \ldots, G_{256}$.
255	1023	$G_{1}, G_{2}, G_{4}, \ldots, G_{512 .}$.
511	2047	$G_{1}, G_{2}, G_{4}, \ldots, G_{1024 .}$
1023	4095	$G_{1}, G_{2}, G_{4}, \ldots, G_{2048}$.

Theorem: A Complete Tripartite graph $K_{3,5, m}$ accepts $\operatorname{GD}\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2}{ }^{n+3}\right)$ if and only if $\quad m=$ $2\left(2^{n}-1\right)$.

Proof: Assume that a complete tripartite graph $K_{3,5, m}$ accepts GD $\quad\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2^{n}}+3\right)$. We have, $q\left(K_{3,5, m}\right)=8 m+15$. That is, the graph $K_{3,5, m}$ accepts GD $\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2}{ }^{n+3}\right)$ if and only if $q\left(K_{3,5, m}\right)=2^{n+4}-1$.
That is, $8 m+15=2^{n+4}-1$.
That is, $m=2\left(2^{n}-1\right)$.
Conversely, Consider $K_{3,5, m}$ with $m=2\left(2^{n}-1\right)$. Then $\mathrm{q}\left(K_{3,5, m}\right)=8\left(2\left(2^{n}-1\right)\right)+15=2^{n+4}-1$. This implies that, $K_{3,5, m}$ can be decomposed into $G_{1}, G_{2}, G_{4}, \ldots$, $G_{2^{n+3}}$.

Example: The $\operatorname{GD}\left(G_{1}, G_{2}, G_{4}, G_{8}, \mathrm{G}_{16}\right)$ of $K_{3,5,2}$.

Fig 4
The following table gives the GD of $K_{3,5, m}$ for different values of m.

m	$q\left(K_{3,5, m}\right)$	GD
2	31	$G_{1}, G_{2}, G_{4}, \ldots, G_{16}$.
6	63	$G_{1}, G_{2}, G_{4}, \ldots, G_{32}$.
14	127	$G_{1}, G_{2}, G_{4}, \ldots, G_{64 .}$
30	255	$G_{1}, G_{2}, G_{4}, \ldots, G_{128 .}$.
62	511	$G_{1}, G_{2}, G_{4}, \ldots, G_{256}$.
126	1023	$G_{1}, G_{2}, G_{4}, \ldots, G_{512 .}$
254	2047	$G_{1}, G_{2}, G_{4}, \ldots, G_{1024 .}$
510	4095	$G_{1}, G_{2}, G_{4}, \ldots, G_{2048}$.
1022	8191	$G_{1}, G_{2}, G_{4}, \ldots, G_{4096}$.
2046	16383	$G_{1}, G_{2}, G_{4}, \ldots, G_{8192 .}$

In the same manner complete tripartite graph $K_{2,5, m}$ accepts GD $\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2}^{3 n+1}\right) \quad$ if and only if $m=\frac{2^{\operatorname{sn}+2}-11}{7}$.

Conclusions

The GD of complete tripartite has been studied. The study can be extended for m-paratite graphs.

References

[1] F. Harary, , "Graph Theory", Narosa Publishing House, New Delhi, (1988).
[2] N. Gnanadhas, P. Joseph, J., International J. Management Systems.,16, (2000), 333.
[3] E.E.R. Merly, N. Gnanadhas, International J. Mathematics Res., 3, (2011), 447.
[4] L.R. Foulds, , "Graph Theory Application", Narosa Publishing House, New Delhi, (1991).
[5] J. Varghese, A. Antonysamy, Mapna J. Sci., 8(2), (2010)
[6] A. Nagarajan, S.N. Krishnan, International J. Management Systems, 21, (2005), 91.

