INDIAN JOURNAL OF RESEARCH FOUNDATION www.indianjournal.net RESEARCH ARTICLE # Synthesis, FT-IR analysis and DFT studies of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl)benzofuran #### T. Alwin*, T. F. Abbs Fen Reji Department of Chemistry, Nesamony Memorial Christian College, Marthandam-629165, Tamil Nadu, India Received 6 August, 2015; Accepted 10 October 2015 Available online 10 October 2015 #### **Abstract** In the present study 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl)benzofuran was prepared from 1-(N-nitroamidino)-3-ethoxyphenyl thiourea and 2-bromo acetylbenzofuran in the presence of triethylamine and characterized by FT-IR spectra. The geometry of the molecule was investigated and optimized with the help of B3LYP/6-31G DFT method using Gaussian 09 software package. The vibrational frequencies which were determined experimentally from spectral data are compared with those obtained theoretically *Ab-initio* and DFT calculations. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. #### **Keywords** Thiourea FT-IR DFT Ab-initio Homo-Lumo #### Introduction Heterocyclic compounds have been an interesting field for a long time in medicinal chemistry. A Heterocyclic compounds containing nitrogen and sulphur atom serve as unique and versatile scaffolds for experimental drug design [1]. Benzothiazole consists of thiazole ring fused with benzene ring and posses, multiple applications, 2-aminobenzothiazoles were intensively studied as central muscle relaxants with glutamate neuro trans mission in biochemical electro physiological and behavioral experiments benzothiazole ring [2] made thiazole ring fused with benzene ring. Benzothiazole derivatives have been studied and found to have various chemical reactivity and biological activity such as antiviral, anti bacterial, antimicrobial activity [3]. Benzofuran derivatives posses a wide range of biological activities such as antimicrobial, antitumor and anti inflammatory activity [4]. Experimental The regents and solvents used were of AR grade. All chemicals were purchased from Merck and Sigma Aldrich. *Corresponding author Tel. +9194442865090 E-mail: alwinchemistry@gmail.com **Published by GM SOFTWARE** T. Alwin, T. F. Abbs Fen Reji ## Synthesis of 2-(4-amino-2-(4-ethoxyphenylamino) thiazol-5-oyl)benzofuran A solution of 1-aryl/alkyl-3-N-nitroamidino) thiourea (1 mmol) in DMF (2 ml) was added to a solution of 2-bromoacetylbenzo furan (1 mmol) in DMF (2 ml). The reaction mixture was stirred well and triethylamine (1 mmol) was added. The reaction mixture was warmed at 80 – 85 °C for 15 min. It was then cooled and poured in to ice-cold water with constant stirring. A yellow orange precipitate thus obtained was filtered washed with water and dried. The crude product was recrystallized from methanol: water (2:1) ratio to give a yellow orange crystalline solid. #### **Results and Discussion** Theoretical computations of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl)benzofuran have been performed using the B3LYP level of theory supplemented with standard 6-31G basis set using the Gaussian 09 software package [5]. Geometries have been first optimized structural parameters were used in the vibration frequency calculation at DFT level. The optimized structure is given in **Fig 1.** **Fig 1** Optimized structure of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl)benzofuran. **Fig 2** Mulliken atomic charges structure of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl) benzofuran. **Table 1** Mulliken atomic charges | | | · · | | |-----------------|----------|-----------------|----------| | Atom | Mulliken | Atom | Mulliken | | | charges | | charges | | C ₁ | 0.564 | H ₂₁ | 0.353 | | C ₂ | -0.574 | C ₂₂ | -0.610 | | C ₃ | -0.816 | C ₂₃ | 0.875 | | C ₄ | -0.093 | C ₂₄ | -0.720 | | C ₅ | 0.056 | C ₂₅ | 0.333 | | C_6 | -0.126 | H ₂₆ | 0.209 | | C ₇ | 0.117 | C ₂₇ | -0.272 | | H ₈ | 0.148 | H ₂₈ | 0.114 | | H ₉ | 0.109 | C ₂₉ | -0.309 | | H ₁₀ | 0.109 | H ₃₀ | 0.131 | | H ₁₁ | 0.113 | H ₃₁ | 0.142 | | C ₁₂ | 0.312 | H ₃₂ | 0.391 | | O ₁₃ | -0.466 | H ₃₃ | 0.320 | | C ₁₄ | 0.380 | O ₃₄ | -0.266 | | C ₁₅ | -0.627 | C ₃₅ | 0.507 | | S ₁₆ | 0.540 | C ₃₆ | -0.250 | | C ₁₇ | 0.105 | H ₃₇ | 0.171 | | N ₁₈ | -0.388 | H ₃₈ | 0.137 | | N ₁₉ | -0.390 | H ₃₉ | 0.182 | | N ₂₀ | -0.138 | O ₄₀ | -0.376 | | | | | | #### **HOMO-LUMO** The optimized geometry of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl)benzofuran at DFT/B3LYP/6-31G level is shown in **Fig 3.** The HOMO–LUMO energies is calculated values of HOMO (-0.25048 a.u), and LUMO (-0.06435 a.u) and energy gap (ΔE) is (-0.18613 a.u), ΔE reveals the chemical activity of the molecule. LUMO as an electron acceptor represents the ability to obtain an electron and HOMO represents the ability to donate an electron. **Fig 3** HOMO and LUMO of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl)benzofuran based on B3LYP/6-31G basis set #### **Molecular geometry** 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl)benzofuran was subjected to optimization in the ground state. The optimized structural parameters was calculated by DFT/ B3LYP/6-31G basis set are listed in Tables 1-3 in accordance with the atom Numbering scheme given in Fig 1. The bond length of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl)benzofuran C₁- C_2 , C_2 - C_3 , C_3 - C_4 , C_4 - C_5 , C_5 - C_6 , C_7 - C_{12} , C_{12} - C_{14} , C_{14} - C_{15} , C₂₂-C₂₄, and C₂₃-C₂₅ shows double character. The bond length of C_7 - C_{35} is more than C_7 - C_{12} ; this is due C_7 - C_{12} double bond character, and C7-C35 single bond character. The bond angle C_{14} - S_{16} - C_{17} (88.287) is very less than C_{17} - N_{20} - C_{22} (130.617) which is due to the fact that electro negativity of nitrogen is greater than sulphur. The dihedral angles show that the molecule consists of two planes. **Table 2** Bond length of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl)benzofuran. | Atom | Bond | Atom | Bond | |--------------------------------|--------|---------------------------------|--------| | | length | | length | | | | | | | C_1 - C_2 | 1.415 | C_2 - C_7 | 2.214 | | C_2 - C_3 | 1.394 | C ₃ -H ₈ | 1.084 | | C ₃ -C ₄ | 1.394 | C ₄ -H ₉ | 1.085 | | C ₄ -C ₅ | 1.411 | C ₅ -H ₁₀ | 1.085 | | C ₅ -C ₆ | 1.390 | C ₆ -H ₁₁ | 1.085 | | | D 11 4 | 1 | D 11 4 | |----------------------------------|-------------|----------------------------------|-------------| | Atom | Bond length | Atom | Bond length | | C ₇ -C ₁₂ | 1.484 | C ₂₄ -C ₂₇ | 1.386 | | C_7 - C_{12} | 1.464 | C_{24} - C_{27} | 1.360 | | C ₁₂ -O ₁₃ | 1.240 | C ₂₄ -H ₂₈ | 1.087 | | _ | | | | | C_{12} - C_{14} | 1.443 | C_{25} - C_{29} | 1.397 | | C ₁₄ -C ₁₅ | 1.402 | C ₂₅ -H ₃₀ | 1.083 | | C14 C15 | 1.402 | C25 1130 | 1.005 | | C ₁₄ -S ₁₆ | 1.776 | C_{27} - H_{31} | 1.084 | | | | | | | S_{16} - C_{17} | 1.759 | N_{19} - H_{32} | 1.012 | | C ₁₇ -N ₁₈ | 1.316 | N ₁₉ -H ₃₃ | 1.009 | | C17-1 \ 18 | 1.510 | 119-1133 | 1.009 | | C ₁₅ -N ₁₉ | 1.363 | C ₂ -O ₃₄ | 1.366 | | | | | | | C_{17} - N_{20} | 1.358 | C_7 - C_{35} | 1.359 | | NI II | 1.010 | 0.0 | 2.206 | | N_{20} - H_{21} | 1.010 | C_{29} - C_{36} | 2.396 | | N ₂₀ -C ₂₂ | 1.414 | C ₃₆ -H ₃₇ | 1.090 | | 20 - 22 | · | - 30 37 | | | C_{22} - C_{23} | 1.398 | C_{36} - H_{38} | 1.097 | | G G | 1.407 | G II | 1.005 | | C_{22} - C_{24} | 1.407 | C_{36} - H_{39} | 1.097 | | C ₂₃ -C ₂₅ | 1.400 | C ₂₉ -O ₄₀ | 1.368 | | 23 225 | 2.100 | 29 0 40 | 1.500 | | C ₂₃ -H ₂₆ | 1.080 | | | | | | | | **Table 3** Bond angle of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5oyl)benzofuran. | Atom | Bond angle | Atom | Bond angle | |---|------------|---|------------| | C_1 - C_2 - C_3 | 122.90 | C ₂ -C ₇ -C ₁₂ | 151.21 | | C ₂ -C ₃ -C ₄ | 116.63 | C ₇ -C ₁₂ -O ₁₃ | 118.23 | | C ₃ -C ₄ -C ₅ | 121.53 | C ₇ -C ₁₂ -C ₁₄ | 121.51 | | C ₄ -C ₅ -C ₆ | 121.35 | C_{12} - C_{14} - C_{15} | 137.47 | | C_1 - C_2 - C_7 | 74.753 | C_{12} - C_{14} - S_{16} | 113.82 | | C_2 - C_3 - H_8 | 121.023 | C_{14} - S_{16} - C_{17} | 88.28 | | C ₃ -C ₄ -H ₉ | 119.21 | S_{16} - C_{17} - N_{18} | 115.92 | | C_4 - C_5 - H_{10} | 119.14 | C ₁₄ -C ₁₅ -N ₁₉ | 128.02 | | C ₅ -C ₆ -H ₁₁ | 121.17 | S ₁₆ -C ₁₇ -N ₂₀ | 118.94 | T. Alwin, T. F. Abbs Fen Reji | Bond angle | Value (°) | Bond angle | Value (°) | |---|-----------|---|-----------| | C ₁₇ -N ₂₀ -H ₂₁ | 115.04 | C ₂₄ -C ₂₇ -H ₃₁ | 120.86 | | C ₁₇ -N ₂₀ -C ₂₂ | 130.61 | C ₁₅ -N ₁₉ -H ₃₂ | 119.68 | | N ₂₀ -C ₂₂ -C ₂₃ | 124.29 | C ₁₅ -N ₁₉ -H ₃₃ | 115.84 | | N ₂₀ -C ₂₂ -C ₂₄ | 116.79 | C ₁ -C ₂ -O ₃₄ | 111.55 | | C ₂₂ -C ₂₃ -C ₂₅ | 120.15 | C ₂ -C ₇ -C ₃₅ | 72.00 | | C ₂₂ -C ₂₃ -H ₂₆ | 119.71 | C ₂₅ -C ₂₉ -C ₃₆ | 93.52 | | C_{22} - C_{24} - C_{27} | 120.91 | C ₂₉ -C ₃₆ -H ₃₇ | 135.97 | | C ₂₂ -C ₂₄ -H ₂₈ | 119.89 | C ₂₉ -C ₃₆ -H ₃₉ | 95.22 | | C_{23} - C_{25} - C_{29} | 120.65 | C ₂₅ -C ₂₉ -O ₄₀ | 124.98 | | C_{23} - C_{25} - H_{30} | 118.33 | | | **Table 4** Dihedral angle of bond length of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-oyl)benzofuran. | Atom | Dihedral | Atom | Dihedral | |--|----------|---|----------| | | angle | | angle | | C ₁ -C ₂ -C ₃ -C ₄ | 0.612 | C ₁₂ -C ₁₄ -C ₁₅ -N ₁₉ | -5.657 | | C ₂ -C ₃ -C ₄ -C ₅ | -0.248 | C ₁₄ -S ₁₆ -C ₁₇ -N ₂₀ | -179.68 | | C ₃ -C ₄ -C ₅ -C ₆ | -0.178 | S ₁₆ -C ₁₇ -N ₂₀ -H ₂₁ | -0.618 | | C ₆ -C ₁ -C ₂ -C ₇ | 179.67 | S ₁₆ -C ₁₇ -N ₂₀ -C ₂₂ | 179.54 | | C ₁ -C ₂ -C ₃ -H ₈ | -179.54 | C ₁₇ -N ₂₀ -C ₂₂ -C ₂₃ | -1.869 | | C ₂ -C ₃ -C ₄ -H ₉ | 179.71 | C ₁₇ -N ₂₀ -C ₂₂ -C ₂₄ | 178.36 | | C ₃ -C ₄ -C ₅ -H ₁₀ | 179.86 | N ₂₀ -C ₂₂ -C ₂₃ -C ₂₅ | 179.76 | | C ₄ -C ₅ -C ₆ -H ₁₁ | 179.98 | N ₂₀ -C ₂₂ -C ₂₃ -H ₂₆ | 0.214 | | C ₁ -C ₂ -C ₇ -C ₁₂ | -173.80 | N ₂₀ -C ₂₂ -C ₂₄ -C ₂₇ | 179.76 | | C ₂ -C ₇ -C ₁₂ -O ₁₃ | 7.529 | N ₂₀ -C ₂₂ -C ₂₄ -H ₂₈ | -0.2728 | | C ₂ -C ₇ -C ₁₂ -C ₁₄ | -172.84 | C ₂₂ -C ₂₃ -C ₂₅ -C ₂₉ | 0.0154 | | C ₇ -C ₁₂ -C ₁₄ -C ₁₅ | 6.923 | C ₂₂ -C ₂₃ -C ₂₅ -H ₃₀ | 179.95 | | C ₇ -C ₁₂ -C ₁₄ -S ₁₆ | -177.55 | C ₂₂ - C ₂₄ -C ₂₇ -H ₃₁ | -179.99 | | C ₁₂ -C ₁₄ -S ₁₆ -C ₁₇ | -177.14 | C ₁₄ -C ₁₅ -N ₁₉ -H ₃₂ | 15.79 | | C ₁₄ -S ₁₆ -C ₁₇ -N ₁₈ | 0.325 | C ₁₄ -C ₁₅ -N ₁₉ -H ₃₃ | 165.84 | | | | | | | Atom | Dihedral | Atom | Dihedral | |--|----------|--|----------| | | angle | | angle | | C ₆ -C ₁ -C ₂ -O ₃₄ | 179.68 | C ₂₅ -C ₂₉ -C ₃₆ -H ₃₈ | 55.05 | | C ₁ -C ₂ -C ₇ -C ₃₅ | 1.15 | C ₂₅ -C ₂₉ -C ₃₆ -H ₃₉ | 55.04 | | C ₂₃ -C ₂₅ -C ₂₉ -C ₃₆ | 179.96 | C ₂₃ -C ₂₅ -C ₂₉ -O ₄₀ | 179.99 | | C ₂₅ -C ₂₉ -C ₃₆ -H ₃₇ | 179.97 | | | #### **Infrared Spectra** The compound 2-(4-amino-2-(4-ethoxy phenylamino)thiazol-5-oyl)benzofuran was obtained in 98% yield with melting point 155-158 °C. Based on the elemental analysis the molecular composition of the compound was found to be $C_{19}H_{14}N_3O_3S$. The IR (KBr) spectrum of the compound shows N-H peaks at 3454, 3425, and 3400 cm⁻¹ respectively. The aromatic C-H bond gives peak at 3078 cm⁻¹, 3045 cm⁻¹ 3078 cm⁻¹. The carbonyl group which occurred at 1649 cm⁻¹. The vibration study of the molecule is compared with the calculated data and is shown in Fig 4. The calculated band at 3685 cm⁻¹ is due to asymmetric N-H stretching of N_{19} - H_{32} and N_{19} - H_{33} but experimentally it is assigned at 3454 cm⁻¹. Calculated band at 3220 cm⁻¹ is due to asymmetric C-H stretching of C_{23} - H_{26} and N_{20} - H_{21} calculated band at 3078 cm⁻¹, is due to asymmetric C-H stretching of C_{23} - H_{26} , C_{25} - H_{30} , C_{27} - H_{31} , C_{24} - H_{28} . The C=C stretching is experimentally observed around 1562 cm⁻¹ which is close agreement with the calculated frequency 1566,1550, 1514 and 1502 cm⁻¹. The bands with in the range 1585-1015 cm⁻¹ are assigned for C-H in plane bending vibrations which is in close agreement with the experimental values. **Fig 4** Experimental and theoretical FT-IR spectrum of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl)benzofuran. b) Theoretical #### **Conclusions** 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl) benzofuran has been synthesized and characterized by FT-IR spectrum. The structure of 2-(4-amino-2-ethoxyphenylamino thiazol-5oyl)benzofuran was optimized by DFT method using the basis set B3LYP/6-31G. The HOMO and LUMO energy gap reveals the activity of 2-(4-amino-2-(4-ethoxyphenylamino)thiazol-5-oyl)benzofuran. #### Acknowledgement One of the author Dr. T. F. Abbs Fen Reji thanks University Grants Commission, New Delhi for providing Financial Assistance in the form of Major Research Project [F. No. 41-229/2012 (SR)]. The authors thank Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram and CDRI, Lucknow for measuring the spectral and analytical data results. #### References - [1] N. B. Patel, F. M. Shaikh, *Sci. Pharm.*, 78, (2010), 753. - [2] M. Bryson, B. Fulton, P. Benfield, *Drugs*, 52, (1996), 549. - [3] S.P. Singh, S. Seghal, *Indian J. Chem.*, 27B, (1988), 941 - [4] D. R. Harish Kumar, M. D. Karvekar, *Eur. J. Chem.*, 7, (2010), 636. - [5] R. F. Hunter, J. Chem. Soc., (1925), 2023.